Citation: | WANG Rui, JIANG Qihong, ZHOU Yufang, et al. Effects of Mussel Polysaccharides on Glucose Metabolism in Insulin-resistant HepG2 Cells[J]. Science and Technology of Food Industry, 2023, 44(15): 385−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080122. |
[1] |
YANG G, WEI J, LIU P, et al. Role of the gut microbiota in type 2 diabetes and related diseases[J]. Metabolism,2021,117:154712. doi: 10.1016/j.metabol.2021.154712
|
[2] |
林宝旺, 黄小珂, 陈芳琼, 等. 2型糖尿病发病因素和生活节奏快慢的关系[J]. 当代医学,2010,16(4):156−157, 27. [LIN Baowang, HUANG Xiaoke, CHEN Fangqiong, et al. The relation between the risk factors of type 2 diabetes and the speed of life's rhythm[J]. Contemporary Medicine,2010,16(4):156−157, 27.
LIN Baowang, HUANG Xiaoke, CHEN Fangqiong, et al. The relation between the risk factors of type 2 diabetes and the speed of life's rhythm[J]. Contemporary Medicine, 2010, 16(4): 156-157, 27.
|
[3] |
DING Y, XIA S, FANG H, et al. Loureirin B attenuates insulin resistance in HepG2 cells by regulating gluconeogenesis signaling pathway[J]. Eur J Pharmacol,2021,910:174481. doi: 10.1016/j.ejphar.2021.174481
|
[4] |
周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业,2021,47(8):290−296. [ZHOU Wen, ZHUANG Lei, WU Sen. Research progress of plant polysaccharides in hypoglycemic effect of type2 diabetes melli-tus[J]. Food and Fermentation Industries,2021,47(8):290−296.
ZHOU Wen, ZHUANG Lei, WU Sen. Research progress of plant polysaccharides in hypoglycemic effect of type2 diabetes melli-tus[J]. Food and Fermentation Industries, 2021, 47(8): 290-296.
|
[5] |
SUN Y, WANG J, GUO X, et al. Oleic acid and eicosapentaenoic acid reverse palmitic acid-induced insulin resistance in human HepG2 cells via the reactive oxygen species/JUN pathway[J]. Genomics Proteomics Bioinformatics,2021,19(5):754−771. doi: 10.1016/j.gpb.2019.06.005
|
[6] |
SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract,2021:109119.
|
[7] |
TAHRANI A A, BARNETT A H, BAILEY C J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus[J]. Nature Reviews Endocrinology,2016,12(10):566−592. doi: 10.1038/nrendo.2016.86
|
[8] |
KE C, MORGAN S, SMOLINA K, et al. Mortality and cardiovascular risk of sulfonylureas in South Asian, Chinese and other Canadians with diabetes[J]. Canadian Journal of Diabetes,2017,41(2):150−5. doi: 10.1016/j.jcjd.2016.08.218
|
[9] |
MA L X, HUANG X H, ZHENG J, et al. Free amino acid, 5′-Nucleotide, and lipid distribution in different tissues of blue mussel (Mytilis edulis L.) determined by mass spectrometry based metabolomics[J]. Food Chem,2022,373:131435. doi: 10.1016/j.foodchem.2021.131435
|
[10] |
WU J, SHAO H, ZHANG J, et al. Mussel polysaccharide α-D-glucan (MP-A) protects against non-alcoholic fatty liver disease via maintaining the homeostasis of gut microbiota and regulating related gut-liver axis signaling pathways[J]. Int J Biol Macromol,2019,130:68−78. doi: 10.1016/j.ijbiomac.2019.02.097
|
[11] |
XIANG X W, WANG R, CHEN H, et al. Structural characterization of a novel marine polysaccharide from mussel and its antioxidant activity in RAW264.7 cells induced by H2O2[J]. Food Bioscience,2022,47:101659. doi: 10.1016/j.fbio.2022.101659
|
[12] |
XIANG X W, WANG R, YAO L W, et al. Anti-inflammatory effects of Mytilus coruscus polysaccharide on RAW264.7 cells and DSS-induced colitis in mice[J]. Mar Drugs,2021,19:468. doi: 10.3390/md19080468
|
[13] |
ZHU Q, LIN L, ZHAO M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J]. Int J Biol Macromol,2020,159:34−45. doi: 10.1016/j.ijbiomac.2020.05.043
|
[14] |
LIU Y, XU Z, HUANG H, et al. Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats[J]. Int J Biol Macromol,2022,201:616−629. doi: 10.1016/j.ijbiomac.2022.01.102
|
[15] |
JIA R B, WU J, LI Z R, et al. Comparison of physicochemical properties and antidiabetic effects of polysaccharides extracted from three seaweed species[J]. Int J Biol Macromol,2020,149:81−92. doi: 10.1016/j.ijbiomac.2020.01.111
|
[16] |
MOKASHI P, KHANNA A, PANDITA N. Flavonoids from Enicostema littorale Blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway[J]. Biomed Pharmacother,2017,90:268−277. doi: 10.1016/j.biopha.2017.03.047
|
[17] |
王瑞雪, 张筠, 崔艳伟, 等. 柠檬皮多酚成分分析及其对胰岛素抵抗HepG2细胞糖代谢的影响[J]. 食品工业科技,2022,43(23):310−317. [WANG Ruixue, ZHANG Jun, CUI Yanwei, et al. Analysis of polyphenols from lemon peel and its effect on glucose metabolism in insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry,2022,43(23):310−317.
WANG Ruixue, ZHANG Jun, CUI Yanwei, et al. Analysis of polyphenols from lemon peel and its effect on glucose metabolism in insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(23): 310−317.
|
[18] |
张彩平, 袁育林, 李博洁, 等. 驱动蛋白16B在姜黄素影响HepG2细胞脂质摄取中的作用[J]. 中国动脉硬化杂志,2021,29(11):949−954. [ZHANG Caiping, YUAN Yulin, LI Bojie, et al. Role of kinesin family member 16B in the effect of curcumin on lipid uptake of HepG2 cells[J]. Chinese Journal of Arteriosclerosis,2021,29(11):949−954.
ZHANG Caiping, YUAN Yulin, LI Bojie, et al. Role of kinesin family member 16B in the effect of curcumin on lipid uptake of HepG2 cells[J]. Chinese Journal of Arteriosclerosis, 2021, 29(11): 949-954.
|
[19] |
符群, 郐滨, 钟明旭, 等. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业,2021,47(9):120−127. [FU Q, KUAI B, ZHONG M X, et al. Extraction of cordycepin with ultrasound-assisted enzymatic hydrolysis and its hypoglycemic activity[J]. Food and Fermentation Industries,2021,47(9):120−127.
FU Q, KUAI B, ZHONG M X, et al. Extraction of cordycepin with ultrasound-assisted enzymatic hydrolysis and its hypoglycemic activity[J]. Food and Fermentation Industries, 2021, 47(9): 120-127.
|
[20] |
REN B, CHEN C, LI C, et al. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities[J]. Carbohydr Polym,2017,173:192−201. doi: 10.1016/j.carbpol.2017.05.094
|
[21] |
WANG J, WU T, FANG L, et al. Anti-diabetic effect by walnut (Juglans mandshurica Maxim. )-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells[J]. J Funct Foods,2020,69:103944. doi: 10.1016/j.jff.2020.103944
|
[22] |
DING Q, ZHANG B, ZHENG W, et al. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet[J]. Biomed Pharmacother,2019,118:109262. doi: 10.1016/j.biopha.2019.109262
|
[23] |
WU G, BAI Z, WAN Y, et al. Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway[J]. Food Hydrocolloids,2020,101:105456. doi: 10.1016/j.foodhyd.2019.105456
|
[24] |
马二兰, 张帆, 吕春秋, 等. 荔浦芋球蛋白结构表征及其对HepG2细胞糖代谢的影响[J]. 食品工业科技,2022,43(15):359−365. [MA Erlan, ZHANG Fan, LÜ Chunqiu, et al. Structural characterization of Lipu taro globulin and its glucose metabolism activity on HepG2 cells[J]. Science and Technology of Food Industry,2022,43(15):359−365.
MA Erlan, ZHANG Fan, LÜ Chunqiu, et al. Structural characterization of Lipu taro globulin and its glucose metabolism activity on HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(15): 359−365.
|
[25] |
赵可心, 夏凯, 苑鹏, 等. 松花粉提取物对胰岛素抵抗HepG2细胞糖脂代谢的影响[J]. 食品与发酵工业,2019,45(6):83−90. [ZHAO Kexin, XIA Kai, YUAN Peng, et al. Effects of pine pollen extracts on insulin resisted glycolipid metabolism in HepG2 cells[J]. Food and Fermentation Industries,2019,45(6):83−90.
ZHAO Kexin, XIA Kai, YUAN Peng, et al. Effects of pine pollen extracts on insulin resisted glycolipid metabolism in HepG2 cells[J]. Food and Fermentation Industries, 2019, 45(6): 83-90.
|
[26] |
陈梦霞, 汪妮, 孟凡强, 等. 生姜姜辣素的分离及对HepG2细胞胰岛素抵抗的预防作用[J]. 食品工业科技,2022,43(22):387−395. [CHEN Mengxia, WANG Ni, MENG Fanqiang, et al. Isolation of gingerols and its preventive effect on insulin resistance of HepG2 cells[J]. Science and Technology of Food Industry,2022,43(22):387−395.
CHEN Mengxia, WANG Ni, MENG Fanqiang, et al. Isolation of gingerols and its preventive effect on insulin resistance of HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(22): 387−395.
|
[27] |
ZHU J, WU M, ZHOU H, et al. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora[J]. Food Res Int,2021,148:110594. doi: 10.1016/j.foodres.2021.110594
|
[28] |
ZHANG Y, HUANG N Q, YAN F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link[J]. Behav Brain Res,2018,339:57−65. doi: 10.1016/j.bbr.2017.11.015
|
[29] |
THORENS B. GLUT2, glucose sensing and glucose homeostasis[J]. Diabetologia,2015,58(2):221−232. doi: 10.1007/s00125-014-3451-1
|
[30] |
CHEN B, ABAYDULA Y, LI D, et al. Taurine ameliorates oxidative stress by regulating PI3K/Akt/GLUT4 pathway in HepG2 cells and diabetic rats[J]. J Funct Foods,2021,85:104629. doi: 10.1016/j.jff.2021.104629
|
[31] |
YANG B, YUAN L, ZHANG W, et al. Sturgeon protein-derived peptide KIWHHTF prevents insulin resistance via modulation of IRS-1/PI3K/AKT signaling pathways in HepG2 cells[J]. J Funct Foods,2022,94:105126. doi: 10.1016/j.jff.2022.105126
|