ZOU Qiang, NIU Xinxiang, LIU Ping, et al. Growth Characteristics of Bacillus velezensis Antagonistic to Botrytis Cinerea and Its Effects on Related Defense Enzyme Activities[J]. Science and Technology of Food Industry, 2023, 44(15): 126−133. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060270.
Citation: ZOU Qiang, NIU Xinxiang, LIU Ping, et al. Growth Characteristics of Bacillus velezensis Antagonistic to Botrytis Cinerea and Its Effects on Related Defense Enzyme Activities[J]. Science and Technology of Food Industry, 2023, 44(15): 126−133. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060270.

Growth Characteristics of Bacillus velezensis Antagonistic to Botrytis Cinerea and Its Effects on Related Defense Enzyme Activities

More Information
  • Received Date: June 27, 2022
  • Available Online: June 05, 2023
  • To clarify the mechanism of resistance of Bacillus velezensis TP-1 to gray mold, a marker strain TP-1R was screened for resistance to 300 μg/mL of rifampicin by an antibiotic marker method in this study. The genetic stability of the resistance of the marker strains and their antagonism to gray mold of grapes were studied, and their colonization in grapes and their effect on the activity of defence enzymes in the grapes were analysed. The results showed that the labeled strain could still grow stably in the medium containing rifampicin after 15 times of subculture, and the antagonistic effect of the labeled strain against gray mold was not significantly different from that of the original strain. The colonization amount of the labeled strain reached the peak of 4.32×106 CFU/g on the 15th day of storage (20 ℃), and was still 3.11×106 CFU/g on the 30th day of storage, indicating that strain TP-1 could be stably colonized on grapes. Inoculation of strain TP-1 fermentation broth could effectively inhibit the occurrence of gray mold and resultantly reduced the decay rate of grapes. During storage, the activity of grape defence enzymes PAL, PPO and APX increased first and then decreased, and the activity of the three enzymes in the group treated with the antagonistic bacterium TP-1 was significantly higher than CK (P<0.05). At the 15th day, the activities of PAL, PPO and APX in the antagonistic bacterium treatment were 1.23, 1.19 and 2.01 times higher than CK. The colonization of strain TP-1 on grape could enhance activities of a set of defense-related enzymes, including PAL, PPO and APX, and enhance the resistance of grape to gray mold to a certain extent. This study provided a scientific basis for revealing the mechanism involved in the biocontrol effectiveness of Bacillus velezensis TP-1.
  • [1]
    李静. 伯克霍尔德氏菌Burkholderia contaminans B-1对玫瑰香葡萄采后病害生防潜力研究[D]. 太原: 山西大学, 2016

    LI J. The study on biocontrol of post harvest diseases of Muscat grapes by Burkholderia contaminans B-1[D]. Taiyuan: Shanxi University, 2016.
    [2]
    NALLY M C, PESCE V M, MATURANO Y P, et al. Biocontrol of Botrytis cinerea in table grapes by non-pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina[J]. Postharvest Biology & Technology,2012,64(1):40−48.
    [3]
    FURUYA S, MOCHIZUKI M, AOKI Y, et al. Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases[J]. Biocontrol Science and Technology,2011,21(6):705−720. doi: 10.1080/09583157.2011.574208
    [4]
    LI Q, LI C, LI P, et al. The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved[J]. Biological Control,2017,113:18−25. doi: 10.1016/j.biocontrol.2017.06.009
    [5]
    张威, 周勇, 彭言劼, 等. 葡萄灰霉病病原菌鉴定及天然药物的抑制效果评价[J]. 中外葡萄与葡萄酒,2021(4):26−32. [ZHANG W, ZHOU Y, PENG Y J, et al. Identification of grape gray mold pathogen and evaluation of inhibitory effect of natural fungicide[J]. Sino-Overseas Grapevine & Wine,2021(4):26−32. doi: 10.13414/j.cnki.zwpp.2021.04.006

    ZHANG W, ZHOU Y, PENG Y J, et al. Identification of grape gray mold pathogen and evaluation of inhibitory effect of natural fungicide[J]. Sino-Overseas Grapevine & Wine, 2021, (4): 26-32. doi: 10.13414/j.cnki.zwpp.2021.04.006
    [6]
    YANG L, ZENG K, MING J. Control of blue and green mold decay of citrus fruit by Pichia membranefaciens and induction of defense responses[J]. Entia Horticulturae,2012,135(none):120−127.
    [7]
    陈志谊. 芽孢杆菌类生物杀菌剂的研发与应用[J]. 中国生物防治学报,2015,31(5):723−732. [CHEN Z Y. Research and application of bio-fungicide with Bacillus spp

    J]. Chinese Journal of Biological Control,2015,31(5):723−732.
    [8]
    申红妙, 李正楠, 贾招闪, 等. 内生枯草芽孢杆菌JL4在葡萄叶上的定殖及其对葡萄霜霉病的防治[J]. 应用生态学报,2016,27(12):4022−4028. [SHEN H M, LI Z N, JIA Z S, et al. Colonization of grape leaves by endophytic Bacillus subtilis JL4 and its control of grape downy mildew[J]. Chinese Journal of Applied Ecology,2016,27(12):4022−4028.

    SHEN H M, LI Z N, JIA Z S, et al. Colonization of grape leaves by endophytic Bacillus subtilis JL4 and its control of grape downy mildew[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 4022-4028.
    [9]
    BACON C W, YATES I E, HINTON D M, et al. Biological control of Fusarium moniliforme in Maize[J]. Environmental Health Perspectives,2001,109(2):325−332.
    [10]
    高振峰, 赵佳. 贝莱斯芽孢杆菌ZSY-1脂肽物质对番茄采后软化及早疫病发生的影响[J]. 西北农业学报,2022,31(1):89−98. [GAO Z F, ZHAO J. Effect of lipopeptide by Bacillus velezensis ZSY-1 on tomato postharvest softening and early blight[J]. Acta Agriculturae Boreali-occidentalis Sinica,2022,31(1):89−98. doi: 10.7606/j.issn.1004-1389.2022.01.011

    GAO Z F, ZHAO J. Effect of lipopeptide by Bacillus velezensis ZSY-1 on tomato postharvest softening and early blight[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(1): 89-98. doi: 10.7606/j.issn.1004-1389.2022.01.011
    [11]
    DESOIGNIES N, SCHRAMME F, ONGENA M, et al. Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyxa betae[J]. Molecular Plant Pathology,2013,14(4):416−421. doi: 10.1111/mpp.12008
    [12]
    沙月霞, 张昂, 伍顺华, 等. 假单胞菌S149对水稻防御酶的诱导及定殖能力[J]. 中国植保导刊,2020,40(7):10−16. [SHA Y X, ZHANG A, WU S H, et al. Colonization ability of Pseudomonas S149 and induction of defense-related enzymes in rice[J]. China Plant Protection,2020,40(7):10−16.

    SHA Y X, ZHANG A, WU S H, et al. Colonization ability of Pseudomonas S149 and induction of defense-related enzymes in rice[J]. China Plant Protection, 2020, 40(7): 10-16.
    [13]
    DROBY S, WISNIEWSKI M. The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology[J]. Postharvest Biology and Technology,2018,140:107−112. doi: 10.1016/j.postharvbio.2018.03.004
    [14]
    陈刘军, 俞仪阳, 王超, 等. 蜡质芽孢杆菌AR156防治水稻纹枯病机理初探[J]. 中国生物防治学报,2014,30(1):107−112. [CHEN L J, YU Y Y, WANG C, et al. Preliminary research of mechanisms underlying Bacillus cereus AR156-mediated resistance to rhizoctonia solani in rice[J]. Chinese Journal of Biological Control,2014,30(1):107−112. doi: 10.16409/j.cnki.2095-039x.2014.01.018

    CHEN L J, YU Y Y, WANG C, et al. Preliminary research of mechanisms underlying Bacillus cereus AR156-mediated resistance to rhizoctonia solani in rice[J]. Chinese Journal of Biological Control, 2014, 30(1): 107-112. doi: 10.16409/j.cnki.2095-039x.2014.01.018
    [15]
    沈艳, 何鹏搏, 何鹏飞, 等. 番茄产后灰霉病的病原鉴定及生物防治[J]. 中国农学通报,2021,37(13):102−107. [SHEN Y, HE P B, HE P F, et al. Pathogen identification and biological control of gray mold on postharvest tomato[J]. Chinese Agricultural Science Bulletin,2021,37(13):102−107. doi: 10.11924/j.issn.1000-6850.casb2020-0798

    SHEN Y, HE P B, HE P F, et al. Pathogen identification and biological control of gray mold on postharvest tomato[J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 102-107. doi: 10.11924/j.issn.1000-6850.casb2020-0798
    [16]
    SANTIAGO R, HUILIñIRB C, COTTET L, et al. Microbiological characterization for a new wild strain of Paenibacillus polymyxa with antifungal activity against Botrytis cinerea[J]. Biological Control,2016,103:251−260. doi: 10.1016/j.biocontrol.2016.10.002
    [17]
    BOUBAKRI H, HADJ-BRAHIM A, SCHMITT C, et al. Biocontrol potential of chenodeoxycholic acid (CDCA) and endophytic Bacillus subtilis strains against the most destructive grapevine pathogens[J]. Crop and Horticultural Science,2015,4(43):261−274.
    [18]
    RUIZ C, BJAR V, MARTNEZ-CHECA F, et al. Bacillus velezensis sp. nov. a surfactant producing bacterium isolated from the river Vélez in Málaga, southern Spain[J]. Int J Syst Evol Microbiol,2005,55:191−195. doi: 10.1099/ijs.0.63310-0
    [19]
    DUNLAP C A, KIM S J, KWON S W, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens, Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology,2016,66(3):1212−1217. doi: 10.1099/ijsem.0.000858
    [20]
    潘梦诗, 郭文阳, 张宗源, 等. 贝莱斯芽孢杆菌对花生白绢病的防治效果[J]. 生物学杂志,2022,39(1):37−41. [PAN M S, GUO W Y, ZHANG Z Y, et al. Biocontrol effects of Bacillus velezensis on peanut stem rot caused by Sclerotium rolfsii[J]. Journal of Biology,2022,39(1):37−41.

    PAN M S, GUO W Y, ZHANG Z Y, et al. Biocontrol effects of Bacillus velezensis on peanut stem rot caused by Sclerotium rolfsii[J]. Journal of Biology, 2022, 39(1): 37-41.
    [21]
    张倩, 陈雨诗, 许春艳, 等. 贝莱斯芽孢杆菌防治甜樱桃采后软腐病的效果和机理[J]. 食品科学,2023,44(7):229−239. [ZHANG Q, CHEN Y S, XU C Y, et al. Effects and mechanism of Bacillus velezensis on control and induced resistance of postharvest soft rot of sweet cherry fruit[J]. Food Science,2023,44(7):229−239.

    ZHANG Q, CHEN Y S, XU C Y, et al. Effects and mechanism of Bacillus velezensis on control and induced resistance of postharvest soft rot of sweet cherry fruit[J]. Food Science, 2023, 44(7): 229-239.
    [22]
    张晓勇, 李树江, 严凯, 等. 杧果采后炭疽病生防菌株筛选及其培养特性研究[J]. 园艺学报,2021,48(11):2171−2184. [ZHANG X Y, LI S J, YAN K, et al. Screening and culture characteristics of biocontrol strains of postharvest anthracnose of mango[J]. Acta Horticulturae Sinica,2021,48(11):2171−2184.

    ZHANG X Y, LI S J, YAN Kai, et al. Screening and culture characteristics of biocontrol strains of postharvest anthracnose of mango[J]. Acta Horticulturae Sinica, 2021, 48(11): 2171-2184.
    [23]
    管力慧. 拮抗菌对甜瓜贮藏品质及生理影响的研究[D]. 乌鲁木齐: 新疆大学, 2021

    GUAN L H. Study on the effect of antagonistic bacteria on storage quality and physiology of melon[D]. Urumqi: Xinjiang University, 2021.
    [24]
    罗云艳. 烟草根黑腐病根际拮抗菌的筛选、鉴定及其生物防治研究[D]. 杨凌: 西北农林科技大学, 2021

    LUO Y Y. Screening, identification and biological control of antagonistic bacteria in the rhizosphere of tobacco root black rot[D]. Yangling: Northwest A&F University, 2021.
    [25]
    蔡学清, 何红, 胡方平. 双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态[J]. 福建农业大学学报,2003(1):41−45. [CAI X Q, HE H, HU F P. Colonization trends of Bacillus subtilis BS-2 and BS-1 in capsicum with dual-resistant label[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2003(1):41−45.

    CAI X Q, HE H, HU F P. Colonization trends of Bacillus subtilis BS-2 and BS-1 in capsicum with dual-resistant label[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2003(1): 41-45.
    [26]
    肖相政, 刘可星, 廖宗文. 短小芽孢杆菌BX-4抗生素标记及定殖效果研究[J]. 农业环境科学学报,2009,28(6):1172−1176. [XIAO X Z, LIU K X, LIAO Z W. Ampicillin-resistant Bacillus pumilus BX-4 and Its colonization in the tomato rhizosphere[J]. Journal of Agro-Environment Science,2009,28(6):1172−1176. doi: 10.3321/j.issn:1672-2043.2009.06.014

    XIAO X Z, LIU K X, LIAO Z W. Ampicillin-resistant Bacillus pumilus BX-4 and Its colonization in the tomato rhizosphere[J]. Journal of Agro-Environment Science, 2009, 28(6): 1172-1176. doi: 10.3321/j.issn:1672-2043.2009.06.014
    [27]
    张冬冬, 刘涛, 高同国, 等. 棉花黄萎病拮抗细菌Z-5菌株的定殖能力检测[J]. 棉花学报,2013,25(6):510−516. [ZHANG D D, LIU T, GAO T G, et al. Detection of the colonization ability of antagonistic bacteria strain Z-5 against cotton verticillium wilt[J]. Cotton Science,2013,25(6):510−516. doi: 10.3969/j.issn.1002-7807.2013.06.006

    ZHANG D D, LIU T, GAO T G, et al. Detection of the colonization ability of antagonistic bacteria strain Z-5 against cotton verticillium wilt[J]. Cotton Science, 2013, 25(6): 510-516. doi: 10.3969/j.issn.1002-7807.2013.06.006
    [28]
    郗良卿, 吴澎, 李睿琪. 贝莱斯芽孢杆菌对甜樱桃软腐病生防效果的研究[J]. 中国果菜,2022,42(1):59−68. [XI L Q, WU P, LI R Q. Biocontrol effect of bacillus velezensis soft rot of sweet cherry[J]. China Fruit & Vegetable,2022,42(1):59−68.

    XI L Q, WU P, LI R Q. Biocontrol effect of bacillus velezensis soft rot of sweet cherry[J]. China Fruit & Vegetable, 2022, 42(1): 59-68.
    [29]
    罗琳, 王其慧, 赵海霞, 等. 葡萄灰霉病生防菌株的筛选及其拮抗机理初探[J]. 中国酿造,2017,36(4):93−98. [LUO L, WANG Q H, ZHAO H X, et al. Screening of bio-control strain against Botrytis cinerea and preliminary research on its antagonistic mechanisms[J]. China Brewing,2017,36(4):93−98.

    LUO L, WANG Q H, ZHAO H X, et al. Screening of bio-control strain against Botrytis cinerea and preliminary research on its antagonistic mechanisms[J]. China Brewing, 2017, 36(4): 93-98.
    [30]
    王红丽, 善文辉, 胡海瑶, 等. 生防菌混合接种对葡萄灰霉病菌的防治效果[J]. 中国生物防治学报,2020,36(2):265−271. [WANG H L, SHAN W H, HU H Y, et al. Control effect of mixed inoculation of different biocontrol strains on Botrytis cinerea[J]. Chinese Journal of Biological Control,2020,36(2):265−271. doi: 10.16409/j.cnki.2095-039x.2020.02.012

    WANG H L, SHAN W H, HU H Y, et al. Control effect of mixed inoculation of different biocontrol strains on Botrytis cinerea[J]. Chinese Journal of Biological Control, 2020, 36(2): 265-271. doi: 10.16409/j.cnki.2095-039x.2020.02.012
    [31]
    徐莉, 陈小洁, 曹静婷, 等. 小麦赤霉病生防菌DZSG23的抗病机制[J]. 浙江农业学报,2020,32(11):2001−2008. [XU L, CHEN X J, CAO J T, et al. Resistance mechanism of biocontrol strain DZSG23 against wheat scab[J]. Acta Agriculturae Zhejiangensis,2020,32(11):2001−2008. doi: 10.3969/j.issn.1004-1524.2020.11.10

    XU L, CHEN X J, CAO J T, et al. Resistance mechanism of biocontrol strain DZSG23 against wheat scab[J]. Acta Agriculturae Zhejiangensis, 2020, 32(11): 2001-2008. doi: 10.3969/j.issn.1004-1524.2020.11.10
    [32]
    文才艺, 王凯旋, 汪敏, 等. 内生细菌EBS05在小麦体内的定殖动态及其对小麦纹枯病的防治作用[J]. 植物保护学报,2011,38(6):481−486. [WEN C Y, WANG K X, WANG M, et al. Colonization trends of endophytic bacteria EBS05 in wheat and its control effect on wheat sharp eyespot[J]. Journal of Plant Protection,2011,38(6):481−486. doi: 10.13802/j.cnki.zwbhxb.2011.06.001

    WEN C Y, WANG K X, WANG M, et al. Colonization trends of endophytic bacteria EBS05 in wheat and its control effect on wheat sharp eyespot[J]. Journal of Plant Protection, 2011, 38(6): 481-486. doi: 10.13802/j.cnki.zwbhxb.2011.06.001
    [33]
    杨洪凤, 薛雅蓉, 余向阳, 等. 内生解淀粉芽孢杆菌CC09菌株在小麦叶部的定殖能力及其防治白粉病效果研究[J]. 中国生物防治学报,2014,30(4):481−488. [YANG H F, XUE Y R, YU X Y, et al. Colonization of Bacillus amyloliquefaciens CC09 in wheat leaf and its biocontrol effect on powdery mildew disease[J]. Chinese Journal of Biological Control,2014,30(4):481−488. doi: 10.16409/j.cnki.2095-039x.2014.04.010

    YANG H F, XUE Y R, YU X Y, et al. Colonization of Bacillus amyloliquefaciens CC09 in wheat leaf and its biocontrol effect on powdery mildew disease[J]. Chinese Journal of Biological Control, 2014, 30(4): 481-488. doi: 10.16409/j.cnki.2095-039x.2014.04.010
    [34]
    林陈强, 李占飞, 张慧, 等. 枯草芽孢杆菌CS16诱导香蕉抗病性相关防御酶系的研究[J]. 福建农业学报,2013,28(6):570−574. [LIN C Q, LI Z F, ZHANG H, et al. Induction of defense-related enzymes in banana seedling by Bacillus subtilis strain CS16[J]. Fujian Journal of Agricultural Sciences,2013,28(6):570−574. doi: 10.3969/j.issn.1008-0384.2013.06.013

    LIN C Q, LI Z F, ZHANG H, et al. Induction of defense-related enzymes in banana seedling by Bacillus subtilis strain CS16[J]. Fujian Journal of Agricultural Sciences, 2013, 28(6): 570-574. doi: 10.3969/j.issn.1008-0384.2013.06.013
    [35]
    陈爽, 王继华, 张必弦, 等. 贝莱斯芽孢杆菌对大豆根腐病盆栽防效及防御酶活性检测[J]. 分子植物育种,2022,20(19):6492−6500. [CHEN S, WANG J H, ZHANG B X, et al. Control effect of Bacillus velezensis on soybean root rot in pot and detection of defensive enzyme activity[J]. Molecular Plant Breeding,2022,20(19):6492−6500. doi: 10.13271/j.mpb.020.006492

    CHEN S, WANG J H, ZHANG B X, et al. Control effect of Bacillus velezensis on soybean root rot in pot and detection of defensive enzyme activity[J]. Molecular Plant Breeding, 2022, 20(19): 6492-6500. doi: 10.13271/j.mpb.020.006492
    [36]
    FANG C, MIN W, YU Z, et al. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579[J]. World Journal of Microbiology and Biotechnology,2010,26(4):675−684. doi: 10.1007/s11274-009-0222-0
    [37]
    孙一凡, 刘喆, 李海洋, 等. 侧孢芽孢杆菌Bl13对番茄早疫病防治效果及机制[J]. 应用生态学报,2021,32(1):299−308. [SUN Y F, LIU Z, LI H Y, et al. Biocontrol effect and mechanism of Bacillus laterosporus Bl13 against early blight disease of tomato[J]. Chinese Journal of Applied Ecology,2021,32(1):299−308. doi: 10.13287/j.1001-9332.202101.036

    SUN Y F, LIU Z, LI H Y, et al. Biocontrol effect and mechanism of Bacillus laterosporus Bl13 against early blight disease of tomato[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 299-308. doi: 10.13287/j.1001-9332.202101.036
    [38]
    孙建波, 王宇光, 赵平娟, 等. 拮抗菌XB16在香蕉体内的定殖及对抗病相关酶活性的影响[J]. 热带作物学报,2010,31(2):212−216. [SUN J B, WANG Y G, ZHAO P J, et al. Colonization of antagonistic XB16 in banana and its effects on the activities of disease-resistance related enzymes[J]. Chinese Journal of Tropical Crops,2010,31(2):212−216. doi: 10.3969/j.issn.1000-2561.2010.02.010

    SUN J B, WANG Y G, ZHAO P J, et al. Colonization of antagonistic XB16 in banana and its effects on the activities of disease-resistance related enzymes[J]. Chinese Journal of Tropical Crops, 2010, 31(2): 212-216. doi: 10.3969/j.issn.1000-2561.2010.02.010
    [39]
    王雪, 张丹妮, 王春伟, 等. 解淀粉芽孢杆菌FS6在人参体内的定殖特性及对人参诱导抗病性[J]. 西北农林科技大学学报(自然科学版),2019,47(7):125−130, 138. [[WANG X, ZHANG D N, WANG C W, et al. Colonization and induced resistance of Bacillus amyloliquefaciens FS6 in ginseng[J]. Journal of Northwest A&F University (Natural Science Edition),2019,47(7):125−130, 138.

    [WANG X, ZHANG D N, WANG C W, et al. Colonization and induced resistance of Bacillus amyloliquefaciens FS6 in ginseng[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(7): 125-130, 138.
    [40]
    NIU D D, LIU H X, JIANG C H, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways[J]. Mol Plant Microbe Interact,2011,24(5):533−542. doi: 10.1094/MPMI-09-10-0213
  • Cited by

    Periodical cited type(10)

    1. 毕泗伟. 食品安全监督抽检在食品监管中的作用. 食品安全导刊. 2025(05): 36-38 .
    2. 刘绮琪,陈坤才,许静琳,黄德演,余威,张维蔚. 基于多源数据的肉制品食品安全风险评价研究. 职业与健康. 2024(09): 1158-1166 .
    3. 杨瑞,赵豪豪,马海军. 食品安全抽样技术发展与提升. 食品安全质量检测学报. 2024(14): 293-298 .
    4. 杨子恩. 食品安全抽检数据质量提升策略研究. 食品安全导刊. 2023(04): 72-76 .
    5. 曹东丽,翟雨佳,杨栩,刘园,徐慧静. 冷冻饮品网络销售发展现状及对策研究. 质量安全与检验检测. 2023(01): 53-57 .
    6. 覃思森. 食品安全监督抽检的效能提升与发展建议. 食品安全导刊. 2023(30): 50-53 .
    7. 高超. 食品抽检重复性问题探析. 现代食品. 2023(17): 165-168 .
    8. 蓝小飞,谢琳,张丽娟,陈婷,施文婷. 食品安全指数法评价嘉兴市售水产品污染物残留风险. 湖北农业科学. 2023(S1): 200-204 .
    9. 郝相帅. 食品抽样环节存在的问题及其对策. 食品安全导刊. 2023(29): 179-181+185 .
    10. 范晓燕,张晓佳,易博春,靳亚卫,王艳英. 县域餐饮环节食品安全监管问题及提升策略. 食品安全导刊. 2023(35): 20-23 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (163) PDF downloads (17) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return