Citation: | JIANG Dongmei, WANG Liuqing, JIANG Nan, et al. Review on the Prevention and Control of Mycotoxins in Agricultural Products Using Essential Oils and Their Nanoformulations[J]. Science and Technology of Food Industry, 2023, 44(19): 449−459. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050271. |
[1] |
MARIN S, RAMOS A J, CANO-SANCHO G, et al. Mycotoxins: occurrence, toxicology, and exposure assessment[J]. Food and Chemical Toxicology,2013,60:218−237. doi: 10.1016/j.fct.2013.07.047
|
[2] |
VAN EGMOND H P, JONKER M A. Worldwide regulations for mycotoxins in food and feed in 2003[M].Rome: Food and Agriculture Organization of the United Nations, 2004.
|
[3] |
REDONDO-BLANCO S, FERNÁNDEZ J, LOPEZ-IBANEZ S, et al. Plant phytochemicals in food preservation: antifungal bioactivity: A review[J]. Journal of Food Protection,2020,83(1):163−171. doi: 10.4315/0362-028X.JFP-19-163
|
[4] |
CHAUDHARI A K, DWIVEDY A K, SINGH V K, et al. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation[J]. Environmental Science and Pollution Research,2019,26(25):25414−25431. doi: 10.1007/s11356-019-05932-2
|
[5] |
牛小杰, 孙鲁阳. 植物精油化学成分的研究进展[J]. 生物化工,2021,7(5):160−162. [NIU Xiaojie, SUN Luyang. Research progress on chemical constituents of plant essential oil[J]. Biological Chemical Engineering,2021,7(5):160−162.
NIU Xiaojie, SUN Luyang. Research progress on chemical constituents of plant essential oil[J]. Biological Chemical Engineering, 2021, 7(5): 160-162.
|
[6] |
BASSOLÉ I H N, JULIANI H R. Essential oils in combination and their antimicrobial properties[J]. Molecules,2012,17(4):3989−4006. doi: 10.3390/molecules17043989
|
[7] |
王利敏, 邢福国, 吕聪, 等. 复合植物精油防霉剂对玉米霉菌及真菌毒素的控制效果[J]. 核农学报,2018,32(4):732−739. [WANG Limin, XING Fuguo, LÜ Cong, et al. Study on the anti-mould and anti-mycotoxins effects of combined essential oils in maize[J]. Journal of Nuclear Agricultural Sciences,2018,32(4):732−739.
WANG Limin, XING Fuguo, LÜ Cong, et al. Study on the anti-mould and anti-mycotoxins effects of combined essential oils in maize[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(4): 732-739.
|
[8] |
JAYASENA D D, JO C. Essential oils as potential antimicrobial agents in meat and meat products: A review[J]. Trends in Food Science & Technology,2013,34(2):96−108.
|
[9] |
中华人民共和国国家卫生和计划生育委员会. GB/2760-2014 食品安全国家标准 食品添加剂使用标准[S]. 北京: 中国标准出版社, 2014.
National Health and Family Planning Commission of People's Republic of China. GB/2760-2014 National standard for food safety standards of using food additives[S]. Beijing: Standards Press of China, 2014.
|
[10] |
TONGNUANCHAN P, BENJAKUL S. Essential oils: Extraction, bioactivities, and their uses for food preservation[J]. Journal of Food Science,2014,79(7):R1231−R1249. doi: 10.1111/1750-3841.12492
|
[11] |
NAZZARO F, FRATIANNI F, COPPOLA R, et al. Essential oils and antifungal activity[J]. Pharmaceuticals,2017,10(4):86. doi: 10.3390/ph10040086
|
[12] |
JUGLAL S, GOVINDEN R, ODHAV B. Spice oils for the control of co-occurring mycotoxin-producing fungi[J]. Journal of Food Protection,2002,65(4):683−687. doi: 10.4315/0362-028X-65.4.683
|
[13] |
HUA H, XING F, SELVARAJ J N, et al. Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin A production[J]. Plos One,2014,9(9):e108285. doi: 10.1371/journal.pone.0108285
|
[14] |
PASSONE M A, GIRARDI N S, ETCHEVERRY M. Evaluation of the control ability of five essential oils against Aspergillus section Nigri growth and ochratoxin A accumulation in peanut meal extract agar conditioned at different water activities levels[J]. International Journal of Food Microbiology,2012,159(3):198−206. doi: 10.1016/j.ijfoodmicro.2012.08.019
|
[15] |
鞠健. 丁香酚和柠檬醛对娄地青霉和黑曲霉的协同抑菌机理探究[D]. 无锡: 江南大学, 2021.
JÜ Jian. Study on the synergistic inhibitory mechanism of eugenol and citral against Penicillium roqueforti[D]. Wuxi: Jiangnan University, 2021.
|
[16] |
SUN Q, SHANG B, WANG L, et al. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus[J]. Applied Microbiology and Biotechnology,2016,100:1355−1364. doi: 10.1007/s00253-015-7159-z
|
[17] |
梁丹丹. 三种植物精油抑制玉米中黄曲霉生长及产毒研究[D]. 北京: 中国农业科学院, 2015.
LIANG Dandan. Inhibitory effect essential oil on Aspergillus flavus growth and aflatoxin production in stored maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
|
[18] |
XU L, TAO N, YANG W, et al. Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo[J]. Industrial Crops and Products,2018,112:427−433. doi: 10.1016/j.indcrop.2017.12.038
|
[19] |
WANG L, JIANG N, WANG D, et al. Effects of essential oil citral on the growth, mycotoxin biosynthesis and transcriptomic profile of Alternaria alternata[J]. Toxins,2019,11(10):553. doi: 10.3390/toxins11100553
|
[20] |
MARIN S, VELLUTI A, RAMOS A J, et al. Effect of essential oils on zearalenone and deoxynivalenol production by Fusarium graminearum in non-sterilized maize grain[J]. Food Microbiology,2004,21(3):313−318. doi: 10.1016/j.fm.2003.08.002
|
[21] |
AIKO V, MEHTA A. Inhibitory effect of clove (Syzygium aromaticum) on the growth of penicillium citrinum and citrinin production[J]. Journal of Food Safety,2013,33(4):440−444. doi: 10.1111/jfs.12074
|
[22] |
BASILICO M Z, BASILICO J C. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin a production[J]. Letters in Applied Microbiology,1999,29(4):238−241. doi: 10.1046/j.1365-2672.1999.00621.x
|
[23] |
JERŠEK B, ULRIH N P, SKRT M, et al. Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum[J]. Archives of Industrial Hygiene and Toxicology,2014,65(2):199−208. doi: 10.2478/10004-1254-65-2014-2486
|
[24] |
袁媛, 邢福国, 刘阳. 植物精油抑制真菌生长及毒素积累的研究[J]. 核农学报,2013,27(8):1168−1172. [YUAN Yuan, XING Fuguo, LIU Yang. Role of essential oils in the inhibition of fungal growth and mycotoxin accumulation[J]. Journal of Nuclear Agricultural Sciences,2013,27(8):1168−1172.
YUAN Yuan, XING Fuguo, LIU Yang. Role of essential oils in the inhibition of fungal growth and mycotoxin accumulation[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(8): 1168-1172.
|
[25] |
KOHIYAMA C Y, RIBEIRO M M Y, MOSSINI S A G, et al. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link[J]. Food Chemistry,2015,173:1006−1010. doi: 10.1016/j.foodchem.2014.10.135
|
[26] |
KUMAR A, SHUKLA R, SINGH P, et al. Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities[J]. Innovative Food Science & Emerging Technologies,2008,9(4):575−580.
|
[27] |
FERREIRA F M D, HIROOKA E Y, FERREIRA F D, et al. Effect of Zingiber officinale Roscoe essential oil in fungus control and deoxynivalenol production of Fusarium graminearum Schwabe in vitro[J]. Food Additives & Contaminants:Part A,2018,35(11):2168−2174.
|
[28] |
YAMAMOTO-RIBEIRO M M G, GRESPAN R, KOHIYAMA C Y, et al. Effect of Zingiber officinale essential oil on Fusarium verticillioides and fumonisin production[J]. Food Chemistry,2013,141(3):3147−3152. doi: 10.1016/j.foodchem.2013.05.144
|
[29] |
KUMAR K N, VENKATARAMANA M, ALLEN J A, et al. Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum[J]. LWT-Food Science and Technology,2016,69:522−528. doi: 10.1016/j.lwt.2016.02.005
|
[30] |
AVANÇO G B, FERREIRA F D, BOMFIM N S, et al. Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production[J]. Food Control,2017,73:806−813. doi: 10.1016/j.foodcont.2016.09.032
|
[31] |
DA SILVA BOMFIM N, KOHIYAMA C Y, NAKASUGI L P, et al. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L. ) against Aspergillus flavus[J]. Food Additives & Contaminants: Part A,2020,37(1):153−161.
|
[32] |
KUMAR A, SHUKLA R, SINGH P, et al. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial[J]. Food and Chemical Toxicology,2010,48(2):539−543. doi: 10.1016/j.fct.2009.11.028
|
[33] |
余伯良, 罗惠波, 周健, 等. 山苍子油抗霉菌及抑制黄曲霉产毒的有效成分研究[J]. 四川轻化工学院学报,2002,14(1):32−36. [YU Boliang, LUO Huibo, ZHOU Jian, et al. Study on the active ingredient of antibiotic activities of Litsea cubeba oil on moulds and the effect on aflatoxin production[J]. Journal of Sichuan Institute of Light Industry and Chemical Technology,2002,14(1):32−36.
YU Boliang, LUO Huibo, ZHOU Jian, et al. Study on the active ingredient of antibiotic activities of Litsea cubeba oil on moulds and the effect on aflatoxin production[J]. Journal of Sichuan Institute of Light Industry and Chemical Technology, 2002,14(1): 32-36.
|
[34] |
RAZZAGHI-ABYANEH M, SHAMS-GHAHFAROKHI M, REZAEE M B, et al. Chemical composition and antiaflatoxigenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils[J]. Food Control,2009,20(11):1018−1024. doi: 10.1016/j.foodcont.2008.12.007
|
[35] |
PRAKASH B, SINGH P, MISHRA P K, et al. Safety assessment of Zanthoxylum alatum Roxb. essential oil, its antifungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits[J]. International Journal of Food Microbiology,2012,153(1-2):183−191. doi: 10.1016/j.ijfoodmicro.2011.11.007
|
[36] |
PATIL R P, NIMBALKAR M S, JADHAV U U, et al. Antiaflatoxigenic and antioxidant activity of an essential oil from Ageratum conyzoides L[J]. Journal of the Science of Food and Agriculture,2010,90(4):608−614. doi: 10.1002/jsfa.3857
|
[37] |
SOLIMAN K M, BADEAA R I. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi[J]. Food and Chemical Toxicology,2002,40(11):1669−1675. doi: 10.1016/S0278-6915(02)00120-5
|
[38] |
RAO V K, GIRISHAM S, REDDY S M. Inhibitory effect of essential oils on growth and ochratoxin A production by Penicillium species[J]. Research Journal of Microbiology,2015,10(5):222. doi: 10.3923/jm.2015.222.229
|
[39] |
JIANG N, WANG L, JIANG D, et al. Transcriptomic analysis of inhibition by eugenol of ochratoxin A biosynthesis and growth of Aspergillus carbonarius[J]. Food Control,2022,135:108788. doi: 10.1016/j.foodcont.2021.108788
|
[40] |
MORCIA C, MALNATI M, TERZI V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1, 8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens[J]. Food Additives & Contaminants:Part A,2012,29(3):415−422.
|
[41] |
余伯良, 罗惠波. 柠檬醛抗真菌及抑制黄曲霉产毒的试验报告[J]. 食品科技,2002,27(4):47−49. [YU Boliang, LUO Huibo. Antimycosis and inhibition aflatoxin’s production of citral[J]. Food Science and Technology,2002,27(4):47−49.
YU Boliang, LUO Huibo. Antimycosis and inhibition aflatoxin’s production of citral[J]. Food Science and Technology, 2002, 27(4): 47-49.
|
[42] |
DAMBOLENA J S, LÓPEZ A G, CÁNEPA M C, et al. Inhibitory effect of cyclic terpenes (limonene, menthol, menthone and thymol) on Fusarium verticillioides MRC 826 growth and fumonisin B1 biosynthesis[J]. Toxicon,2008,51(1):37−44. doi: 10.1016/j.toxicon.2007.07.005
|
[43] |
YIN H B, CHEN C H, KOLLANOOR-JOHNY A, et al. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde[J]. Poultry Science,2015,94(9):2183−2190. doi: 10.3382/ps/pev207
|
[44] |
TIAN J, ZENG X, ZENG H, et al. Investigations on the antifungal effect of nerol against Aspergillus flavus causing food spoilage[J]. The Scientific World Journal, 2013: 230795.
|
[45] |
黄福辉, 项发根, 周为民. 关于山苍子有效成份在储粮中的应用[J]. 粮食贮藏,1980,8(2):19−22. [HUANG Fuhui, XIANG Fagen, ZHOU Weimin. Application of effective components of Litsea cubeba in grain storage[J]. Grain Storage,1980,8(2):19−22.
HUANG Fuhui, XIANG Fagen, ZHOU Weimin. Application of effective components of Litsea cubeba in grain storage[J]. Grain Storage, 1980,8(2): 19-22.
|
[46] |
季茂聘. 浅谈粮食中黄曲霉毒素B1的去毒方法[J]. 粮油仓储科技通讯,2005,20(2):50. [JI Maopin. Discussion on detoxification of Aflatoxin B1 in grain[J]. Liangyou Cangchu Keji Tongxun,2005,20(2):50.
JI Maopin. Discussion on detoxification of Aflatoxin B1 in grain[J]. Liangyou Cangchu Keji Tongxun, 2005,20(2): 50.
|
[47] |
AROYEUN S O, ADEGOKE G O. Reduction of ochratoxin A (OTA) in spiked cocoa powder and beverage using aqueous extracts and essential oils of Aframonmum danielli[J]. African Journal of Biotechnology,2007,6(5):612−616.
|
[48] |
袁媛. 植物精油熏蒸控制玉米中真菌毒素的研究[D]. 北京: 中国农业科学院, 2013.
YUAN Yuan. Study on the ontrol of mycotoxins by essential oils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
|
[49] |
EL ASBAHANI A, MILADI K, BADRI W, et al. Essential oils: from extraction to encapsulation[J]. International Journal of Pharmaceutics,2015,483(1-2):220−243. doi: 10.1016/j.ijpharm.2014.12.069
|
[50] |
PRAKASH B, KUJUR A, YADAV A, et al. Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system[J]. Food Control,2018,89:1−11. doi: 10.1016/j.foodcont.2018.01.018
|
[51] |
QUINTANILLA-CARVAJAL M X, CAMACHO-DIAZ H, MERAZ-TORRES L S, et al. Nanoencapsulation: a new trend in food engineering processing[J]. Food Engineering Reviews,2010,2(1):39−50. doi: 10.1007/s12393-009-9012-6
|
[52] |
DWIVEDY A K, SINGH V K, PRAKASH B, et al. Nanoencapsulated Illicium verum Hook. f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation[J]. Food and Chemical Toxicology,2018,111:102−113. doi: 10.1016/j.fct.2017.11.007
|
[53] |
KALAGATUR N K, NIRMAL GHOSH O S, SUNDARARAJ N, et al. Antifungal activity of chitosan nanoparticles encapsulated with cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum[J]. Frontiers in Pharmacology,2018,9:610. doi: 10.3389/fphar.2018.00610
|
[54] |
WAN J, ZHONG S, SCHWARZ P, et al. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters[J]. Food Chemistry,2019,291:199−206. doi: 10.1016/j.foodchem.2019.04.032
|
[55] |
冯文旭, 吴殿辉, 蔡国林, 等. 精油纳米乳液对禾谷镰刀菌的抑制作用[J]. 食品与发酵工业,2020,46(9):94−100. [FENG Wenxu, WU Dianhui, CAI Guolin, et al. The inhibitory effect of essential oil nanoemulsions on Fusarium graminearum[J]. Food and Fermentation Industries,2020,46(9):94−100.
FENG Wenxu, WU Dianhui, CAI Guolin, et al. The inhibitory effect of essential oil nanoemulsions on Fusarium graminearum[J]. Food and Fermentation Industries, 2020, 46(9): 94-100.
|
[56] |
ANOOJ E S, CHARUMATH Y M, SHARMA V, et al. Nanogels: an overview of properties, biomedical applications, future research trends and developments[J]. Journal of Molecular Structure,2021,1239(19):130446.
|
[57] |
YADAV A, KUJUR A, KUMAR A, et al. Encapsulation of Bunium persicum essential oil using chitosan nanopolymer: Preparation, characterization, antifungal assessment, and thermal stability[J]. International Journal of Biological Macromolecules,2020,142:172−180. doi: 10.1016/j.ijbiomac.2019.09.089
|
[58] |
DAS S, SINGH V K, DWIVEDY A K, et al. Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration[J]. Ecotoxicology and Environmental Safety,2020,189:110000. doi: 10.1016/j.ecoenv.2019.110000
|
[59] |
CHAUDHARI A K, SINGH V K, DEEPIKA S D, et al. Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative[J]. Food and Chemical Toxicology,2020,143:111536. doi: 10.1016/j.fct.2020.111536
|
[60] |
SINGH V K, DAS S, DWIVEDY A K, et al. Assessment of chemically characterized nanoencapuslated Ocimum sanctum essential oil against aflatoxigenic fungi contaminating herbal raw materials and its novel mode of action as methyglyoxal inhibitor[J]. Postharvest Biology and Technology,2019,153:87−95. doi: 10.1016/j.postharvbio.2019.03.022
|
[61] |
DAS S, SINGH V K, DWIVEDY A K, et al. Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B1 contamination and deterioration of nutritional qualities[J]. Food Chemistry,2020,344:128574.
|
[62] |
DAS S, SINGH V K, DWIVEDY A K, et al. Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil[J]. International Journal of Biological Macromolecules,2019,133:294−305. doi: 10.1016/j.ijbiomac.2019.04.070
|
[63] |
LÓPEZ-MENESES A K, PLASCENCIA-JATOMEA M, LIZARDI-MENDOZA J, et al. Schinus molle L. Essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties[J]. LWT-Food Science and Technology,2018,96:597−603. doi: 10.1016/j.lwt.2018.06.013
|
[64] |
DAS S, SINGH V K, DWIVEDY A K, et al. Eugenol loaded chitosan nanoemulsion for food protection and inhibition of aflatoxin B1 synthesizing genes based on molecular docking[J]. Carbohydrate Polymers,2020,255:117339.
|
[65] |
CHAUDHARI A K, SINGH A, SINGH V K, et al. Assessment of chitosan biopolymer encapsulated α-Terpineol against fungal, aflatoxin B1 (AFB1) and free radicals mediated deterioration of stored maize and possible mode of action[J]. Food Chemistry,2020,311:126010. doi: 10.1016/j.foodchem.2019.126010
|
[66] |
CHAUDHARI A K, SINGH V K, DAS S, et al. Antimicrobial, aflatoxin B1 inhibitory and lipid oxidation suppressing potential of anethole-based chitosan nanoemulsion as novel preservative for protection of stored maize[J]. Food and Bioprocess Technology,2020,13:1462−1477. doi: 10.1007/s11947-020-02479-w
|
[67] |
WAN J, JIN Z, ZHONG S, et al. Clove oil-in-water nanoemulsion: mitigates growth of Fusarium graminearum and trichothecene mycotoxin production during the malting of Fusarium infected barley[J]. Food Chemistry,2020,312:126120. doi: 10.1016/j.foodchem.2019.126120
|
[68] |
SINGH P, DASGUPTA N, SINGH V, et al. Inhibitory effect of clove oil nanoemulsion on fumonisin isolated from maize kernels[J]. LWT-Food Science and Technology,2020,134:110237. doi: 10.1016/j.lwt.2020.110237
|
[69] |
WU D, LU J, ZHONG S, et al. Effect of chitosan coatings on physical stability, antifungal and mycotoxin inhibitory activities of lecithin stabilized cinnamon oil-in-water emulsions[J]. LWT-Food Science and Technology,2019,106:98−104. doi: 10.1016/j.lwt.2019.02.029
|
[70] |
YADAV A, KUJUR A, KUMAR A, et al. Assessing the preservative efficacy of nanoencapsulated mace essential oil against food borne molds, aflatoxin B1 contamination, and free radical generation[J]. LWT-Food Science and Technology,2019,108:429−436. doi: 10.1016/j.lwt.2019.03.075
|
[71] |
KUJUR A, KUMAR A, YADAV A, et al. Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action[J]. LWT-Food Science and Technology,2020,130:109619. doi: 10.1016/j.lwt.2020.109619
|
[72] |
KUMAR A, SINGH P P, GUPTA V, et al. Assessing the antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated antifungal formulation based on combination of Ocimum spp. essential oils[J]. International Journal of Food Microbiology,2020,330:108766. doi: 10.1016/j.ijfoodmicro.2020.108766
|
[73] |
KUMAR A, KUJUR A, SINGH P P, et al. Nanoencapsulated plant-based bioactive formulation against food-borne molds and aflatoxin B1 contamination: Preparation, characterization and stability evaluation in the food system[J]. Food Chemistry,2019,287:139−150. doi: 10.1016/j.foodchem.2019.02.045
|
1. |
李师行,徐洪涛,李笑,孙美玲,杨鑫焱,项鹏宇,杨智浩,满朝新,姜毓君. A1/A2 β-酪蛋白基因型的鉴定及其消化性能的比较. 食品工业科技. 2025(05): 160-167 .
![]() | |
2. |
唐琳琳,赵羚暄,秦爱荣,多杰仁青,李红娟,于景华. 不同结构酪蛋白深度水解物的致敏性分析. 粮食与油脂. 2024(12): 148-153 .
![]() |