Citation: | GE Yiqing, TONG Tao. Research Progress on Bioactivities of Food Flavor α-Ionone[J]. Science and Technology of Food Industry, 2022, 43(20): 481−488. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050260. |
[1] |
ALOUM L, ALEFISHAT E, ADEM A, et al. Ionone is more than a violet's fragrance: A review[J]. Molecules,2020,25(24):5822. doi: 10.3390/molecules25245822
|
[2] |
LUKIN I, JACH G, WINGARTZ I, et al. Recovery of natural α-ionone from fermentation broth[J]. Journal of Agricultural and Food Chemistry,2019,67(49):13412−13419. doi: 10.1021/acs.jafc.8b07270
|
[3] |
LALKO J, LAPCZYNSKI A, MCGINTY D, et al. Fragrance material review on ionone[J]. Food and Chemical Toxicology,2007,45(1):S251−S257. doi: 10.1016/j.fct.2007.09.065
|
[4] |
GONÇALVES A C, CAMPOS G, PINTO E, et al. Essential and non-essential elements, and volatile organic compounds for the discrimination of twenty-three sweet cherry cultivars from Fundão, Portugal[J]. Food Chemistry,2022,367(1):130503.
|
[5] |
SILVIA L, MINE O, ULRICH K, et al. Processing of raspberries to dried fruit foam: Impact on major odorants[J]. European Food Research and Technology,2020,246(12):2537−2548. doi: 10.1007/s00217-020-03595-9
|
[6] |
KAI C, JINGFANG W, LIYAN M, et al. Dynamic changes in norisoprenoids and phenylalanine-derived volatiles in off-vine Vidal blanc grape during late harvest[J]. Food Chemistry,2019,289(8):645−656.
|
[7] |
MU B, ZHU Y, LV H P, et al. The enantiomeric distributions of volatile constituents in different tea cultivars[J]. Food Chemistry,2018,265(11):329−336.
|
[8] |
OLADIPUPO A L, SUNKANMI E S, ADESOLA A O, et al. Volatile constituents and insecticidal activity of essential oil of Margaritaria discoidea (Baill. ) G. L. Webster[J]. Journal of Scientific Research and Reports,2016, 11(6):1−6.
|
[9] |
SZILVIA C, ÉVA H B, ERZSÉBET H, et al. Analysis of volatile constituents of Ginkgo leaf[J]. Natural Product Communications,2019,14(6):1−8.
|
[10] |
LI Y, KONG D, LLIANG H, et al. Alkaloid content and essential oil composition of Mahonia breviracema cultivated under different light environments[J]. Journal of Applied Botany and Food Quality,2018,91:171−179.
|
[11] |
OLADIPUPO A L, ISIAKA A O, FAITH S G, et al. Chemical composition and insecticidal activity of essential oils of four varieties of Codiaeum variegatum (L.) from Nigeria[J]. Journal of Essential Oil Bearing Plants,2018,21(3):840−847.
|
[12] |
辛秀兰, 张强, 赵新颖, 等. 主成分分析法评价树莓中挥发性香气成分气味活度值[J]. 食品安全质量检测学报,2022,13(2):395−403. [XIN X L, ZHANG Q, ZHAO X Y, et al. Evaluation of the relative odor activity value of volatile aroma components in Rubus corchorifolious fruits by principal components analysis[J]. Journal of Food Safety & Quality,2022,13(2):395−403. doi: 10.19812/j.cnki.jfsq11-5956/ts.2022.02.052
|
[13] |
OKHALE E S, IGWE R O, EGHAREVBA O H, et al. GC-MS analyses of the volatile oil constituents of the leaf of Landolphia owariensis P. Beauv (Apocynaceae)[J]. European Journal of Medicinal Plants,2016,13(2):1−5.
|
[14] |
LIU Q, LI D, WANG W, et al. Chemical composition and antioxidant activity of essential oils and methanol extracts of different parts from Juniperus rigida Siebold & Zucc[J]. Chemistry & Biodiversity,2016,13(9):1240−1250.
|
[15] |
SHI Y, WANG M, DONG Z, et al. Volatile components and key odorants of Chinese yellow tea (Camellia sinensis)[J]. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,2021,146(33):111512.
|
[16] |
WANG B, CHEN H, QU F, et al. Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude region by GC-MS and GC-O analysis[J]. European Food Research and Technology,2021,248(3):647−657.
|
[17] |
FU J X, DAN H, WANG Y G, et al. Identification of floral aromatic volatile compounds in 29 cultivars from four groups of Osmanthus fragrans by gas chromatography–mass spectrometry[J]. Horticulture, Environment, and Biotechnology,2019,60(4):611−623. doi: 10.1007/s13580-019-00153-5
|
[18] |
DUARTE L P, CAMARGO K C, VIDAL D M, et al. Chemodiversity of essential oils from nine species of Celastraceae[J]. Chemistry & Biodiversity,2020,17(5):e2000107.
|
[19] |
LIZAMA V, PÉREZ-ÁLVAREZ E P, INTRIGLIOLO D S, et al. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: II. Wine, skins, seeds, and grape aromatic composition[J]. Agricultural Water Management,2021,256(3):107078.
|
[20] |
CHENG G, LI Y, QI S, et al. SlCCD1A Enhances the aroma quality of tomato fruits by promoting the synthesis of carotenoid-derived volatiles[J]. Foods,2021,10(11):2678. doi: 10.3390/foods10112678
|
[21] |
BESADA C, SANCHEZ G, GIL R, et al. Volatile metabolite profiling reveals the changes in the volatile compounds of new spontaneously generated loquat cultivars[J]. Food Research International,2017,100(1):234−243.
|
[22] |
CHEN Q, ZHU Y, YAN H, et al. Identification of aroma composition and key odorants contributing to aroma characteristics of white teas[J]. Molecules,2020,25(24):6050. doi: 10.3390/molecules25246050
|
[23] |
HE C J, LI Z Y, LIU H X, et al. Characterization of the key aroma compounds in Semnostachya menglaensis Tsui by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis[J]. Food Research International,2020,131(5):108948.
|
[24] |
SCHOLTES C, NIZET S, MASSART H, et al. Occurrence of theaspirane and its odorant degradation products in hop and beer[J]. Journal of Agricultural and Food Chemistry,2015,63(37):8247−8253. doi: 10.1021/acs.jafc.5b03195
|
[25] |
AHMED A, ABD E E G, YASSER E, et al. Essential oil of Bassia muricata: Chemical characterization, antioxidant activity, and allelopathic effect on the weed Chenopodium murale[J]. Saudi Journal of Biological Sciences,2020,27(7):1900−1906. doi: 10.1016/j.sjbs.2020.04.018
|
[26] |
MICHAEL W. The Merck index: An encyclopedia of chemicals, drugs, and biologicals [J]. Drug Development Research, 2013, 74(5): 339.
|
[27] |
YAN X, WANG W, CHEN Z, et al. Quality assessment and differentiation of Aucklandiae radix and Vladimiriae radix based on GC-MS fingerprint and chemometrics analysis: Basis for clinical application[J]. Analytical and Bioanalytical Chemistry,2020,412(7):1535−1549. doi: 10.1007/s00216-019-02380-2
|
[28] |
WANG B, MENG Q, XIAO L, et al. Characterization of aroma compounds of Pu-erh ripen tea using solvent assisted flavor evaporation coupled with gas chromatography-mass spectrometry and gas chromatography-olfactometry[J]. Food Science and Human Wellness,2022,11(3):618−626. doi: 10.1016/j.fshw.2021.12.018
|
[29] |
袁金梅, 罗靖, 朱琳琳, 等. 3个桂花品种花瓣游离态和糖苷态香气成分[J]. 林业科学,2021,57(8):33−42. [YUAN J M, LUO J, ZHU L L, et al. Free and glycosylated aroma components in petals of three osmanthus fragrans cultivars[J]. Scientia Silvae Sinicae,2021,57(8):33−42.
|
[30] |
HOSSEN K, IWASAKI A, SUENAGA K, et al. Phytotoxicity of the novel compound 3-hydroxy-4-oxo-β-dehydroionol and compound 3-oxo-α-ionone from Albizia richardiana (Voigt.) King & Prain[J]. Environmental Technology & Innovation,2021,23:101779.
|
[31] |
YOSHIDA Y, HARAGUCHI D, UKUDAHOSOKAWA R, et al. Synthesis and activity of 3-oxo-α-ionone analogs as male attractants for the solanaceous fruit fly, Bactrocera latifrons (Diptera: Tephritidae)[J]. Bioscience, Biotechnology, and Biochemistry,2021,85(12):2360−2367. doi: 10.1093/bbb/zbab166
|
[32] |
KAUR J, GULATI M, SINGH S K, et al. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential[J]. Trends in Food Science & Technology,2022,122(2):187−200.
|
[33] |
GENG R, KANG S G, HUANG K, et al. Boosting the photoaged skin: The potential role of dietary components[J]. Nutrients,2021,13(5):1691. doi: 10.3390/nu13051691
|
[34] |
TONG T, PARK J, MOON Y, et al. α-Ionone protects against uvb-induced photoaging in human dermal fibroblasts[J]. Molecules,2019,24(9):1084.
|
[35] |
TONG T, KIM M, PARK T. α-Ionone attenuates high-fat diet-induced skeletal muscle wasting in mice via activation of cAMP signaling[J]. Food & Function,2019,10(2):1167−1178.
|
[36] |
SANZ G, LERAY I, GRÉBERT D, et al. Structurally related odorant ligands of the olfactory receptor OR51E2 differentially promote metastasis emergence and tumor growth[J]. Oncotarget,2017,8(3):4330−4341. doi: 10.18632/oncotarget.13836
|
[37] |
WOLF S, JOVANCEVIC N, GELIS L, et al. Dynamical binding modes determine agonistic and antagonistic ligand effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR)[J]. Scientific Reports,2017,7(1):16007. doi: 10.1038/s41598-017-16001-4
|
[38] |
GELIS L, JOVANCEVIC N, VEITINGER S, et al. Functional characterization of the Odorant Receptor 51E2 in human melanocytes[J]. The Journal of Biological Chemistry,2016,291(34):17772−17786. doi: 10.1074/jbc.M116.734517
|
[39] |
PRONIN A, SLEPAK V. Ectopically expressed olfactory receptors OR51E1 and OR51E2 suppress proliferation and promote cell death in a prostate cancer cell line[J]. Journal of Biological Chemistry,2021,296:100475. doi: 10.1016/j.jbc.2021.100475
|
[40] |
李一澍, 姚逸萍, 黄和强, 等. 萜烯类化合物基于细胞自噬的初步探究[J]. 食品与发酵工业: 1−13[2022-08-10]. DOI:10.13995/j.cnki.11-1802/ts. 030048.
LI Y S, YAO Y P, HUANG H Q, et al. Preliminary study of terpenes based on autophagy[J]. Food and Fermentation Industries: 1−13[2022-08-10]. DOI: 10.13995/j.cnki.11-1802/ts.030048.
|
[41] |
尹佳雯, 竺凯琪, 叶冰琪, 等. 蓝藻挥发物α-紫罗酮诱导莱茵衣藻细胞程序性死亡[J]. 微生物学报,2021,61(9):2883−2890. [YIN J W, ZHU K Q, YE B Q, et al. Programmed cell death in Chlamydomonas reinhardtii induced by cyanobacterial volatile α-ionone[J]. Acta Microbiologica Sinica,2021,61(9):2883−2890.
|
[42] |
ANTONINO P, ARMANDO Z, VALERIA R, et al. Polyphenolic profile and targeted bioactivity of methanolic extracts from mediterranean ethnomedicinal plants on human cancer cell lines[J]. Molecules,2016,21(4):395. doi: 10.3390/molecules21040395
|
[43] |
ONORATI A V, DYCZYNSKI M, OJHA R, et al. Targeting autophagy in cancer[J]. Cancer,2018,124(16):3307−3318. doi: 10.1002/cncr.31335
|
[44] |
GUERVILLE F, DE SOUTO B P, ADER I, et al. Revisiting the hallmarks of aging to identify markers of biological age[J]. The Journal of Prevention of Alzheimer's Disease,2020,7(1):56−64.
|
[45] |
HECKMANN B L, TEUBNER B J W, BOADA R E, et al. Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease[J]. Science Advances,2020,6(33):eabb9036. doi: 10.1126/sciadv.abb9036
|
[46] |
FANG Z, LAURA L, SALLY O N, et al. Insecticide resistance and management strategies in urban ecosystems[J]. Insects,2016,7(1):2. doi: 10.3390/insects7010002
|
[47] |
颜改兰, 王圣印. 西花蓟马对烯啶虫胺、噻虫胺和噻虫嗪的抗性风险和抗性稳定性[J]. 应用生态学报,2020,31(10):3289−3295. [YAN G L, WANG S Y. Resistance risk and resistance stability of Frankliniella occidentalis to nitenpyram, clothianidin and thiamethoxam[J]. Chinese Journal of Applied Ecology,2020,31(10):3289−3295.
|
[48] |
MURATA M, KOBAYASHI T, SEO S. α-Ionone, an apocarotenoid, induces plant resistance to western flower thrips, Frankliniella occidentalis, independently of jasmonic acid[J]. Molecules,2019,25(1):17. doi: 10.3390/molecules25010017
|
[49] |
GUARINO S, BASILE S, ARIF M A, et al. Odorants of capsicum spp. dried fruits as candidate attractants for Lasioderma serricorne F. (Coleoptera: Anobiidae)[J]. Insects,2021,12(1):61. doi: 10.3390/insects12010061
|
[50] |
ISHIDA T, ENOMOTO H, NISHIDA R. New attractants for males of the Solanaceous fruit fly Bactrocera latifrons[J]. Journal of Chemical Ecology,2008,34(12):1532−1535. doi: 10.1007/s10886-008-9562-8
|
[51] |
QU C, YANG Z K, WANG S, et al. Binding affinity characterization of four antennae-enriched odorant-binding proteins from Harmonia axyridis (Coleoptera: Coccinellidae)[J]. Frontiers in Physiology,2022,13:829766. doi: 10.3389/fphys.2022.829766
|
[52] |
MARCELA D F S, VICENTE P C, ALINE F B, et al. Medicinal plant volatiles applied against the root-knot nematode Meloidogyne incognita[J]. Crop Protection,2020,130:105057. doi: 10.1016/j.cropro.2019.105057
|
[53] |
LI J, CHEN L, CHEN Q, et al. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds[J]. Scientific Reports,2021,11(1):2251−2256. doi: 10.1038/s41598-021-81756-w
|
[54] |
ZUO Z. Why algae release volatile organic compounds-the emission and roles[J]. Frontiers in Microbiology,2019,10:491. doi: 10.3389/fmicb.2019.00491
|
[55] |
HOSSEN K, DAS K R, ASATO Y, et al. Allelopathic activity and characterization of allelopathic substances from Elaeocarpus floribundus Blume leaves for the development of bioherbicides[J]. Agronomy,2021,12(1):57. doi: 10.3390/agronomy12010057
|
[56] |
GUO C, SHAN Y, YANG Z, et al. Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel[J]. Journal of the Science of Food and Agriculture,2020,100(6):2664−2674. doi: 10.1002/jsfa.10297
|
[57] |
LIU D K, XU C C, ZHANG L, et al. Evaluation of bioactive components and antioxidant capacity of four celery (Apium graveolens L.) leaves and petioles[J]. International Journal of Food Properties,2020,23(1):1097−1109. doi: 10.1080/10942912.2020.1778027
|
[58] |
TIAN Y, CHENG C, WEI Y, et al. The role of exosomes in inflammatory diseases and tumor-related inflammation[J]. Cells,2022,11(6):1005. doi: 10.3390/cells11061005
|
[59] |
AVOSEH O N, MTUNZI F M, OGUNWANDE I A, et al. Albizia lebbeck and Albizia zygia volatile oils exhibit anti-nociceptive and anti-inflammatory properties in pain models[J]. Journal of Ethnopharmacology,2021,268:113676. doi: 10.1016/j.jep.2020.113676
|
[60] |
ZHU H, SUN C, TONG Y, et al. Insight on the relationship between the compositions and antimicrobial activities of Osmanthus fragrans Lour. (Oleaceae family) essential oils by multivariable analysis[J]. European Food Research and Technology,2021,247(7):1737−1744. doi: 10.1007/s00217-021-03744-8
|
[61] |
HERRERO M, IBÁÑEZ E, CIFUENTES A, et al. Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials[J]. Journal of Food Protection,2006,69(10):2471−2477. doi: 10.4315/0362-028X-69.10.2471
|
[62] |
KAUSHIK K P, VARSHNEY V K, KUMAR P, et al. Microwave-assisted synthesis, characterization, and antimicrobial activity of some odorant Schiff bases derived from naturally occurring carbonyl compounds and anthranilic acid[J]. Synthetic Communications,2016,46(24):2053−2062. doi: 10.1080/00397911.2016.1245749
|
[63] |
ZHANG C, CHEN X, LINDLEY N D, et al. A ''plug-n-play'' modular metabolic system for the production of apocarotenoids[J]. Biotechnology and Bioengineering,2018,115(1):174−183. doi: 10.1002/bit.26462
|
[64] |
AKEMI O. Carotenoid cleavage dioxygenases and their apocarotenoid products in plants[J]. Plant Biotechnology,2009,26(4):351−358. doi: 10.5511/plantbiotechnology.26.351
|
[65] |
QI Z, TONG X, BU S, et al. Cloning and characterization of a novel carotenoid cleavage dioxygenase 1 from Helianthus annuus[J]. Chemistry & Biodiversity,2021,19(1):e202100694.
|
[66] |
ZHONG Y, PAN X, WANG R, et al. ZmCCD10a encodes a distinct type of carotenoid cleavage dioxygenase and enhances plant tolerance to low phosphate[J]. Plant Physiology,2020,184(1):374−392. doi: 10.1104/pp.20.00378
|
[67] |
CENGIZ Ç. Biotransformation of terpene and terpenoid derivatives by Aspergillus niger NRRL 326[J]. Biologia,2020,75(9):1473−1481. doi: 10.2478/s11756-020-00459-1
|
[68] |
LASHBROOKE J G, YOUNG P R, DOCKRALL S J, et al. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family[J]. BMC Plant Biology,2013,13(1):156. doi: 10.1186/1471-2229-13-156
|
[69] |
CHEN X, SHUKAL S, ZHANG C. Integrating enzyme and metabolic engineering tools for enhanced α-ionone production[J]. Journal of Agricultural and Food Chemistry,2019,67(49):13451−13459. doi: 10.1021/acs.jafc.9b00860
|
[70] |
CZAJKA J J, KAMBHAMPATI S, TANG J Y, et al. Application of stable isotope tracing to elucidate metabolic dynamics during Yarrowia lipolytica α-ionone fermentation[J]. iScience,2020,23(2):100854. doi: 10.1016/j.isci.2020.100854
|
[71] |
VESPERMANN K A C, PAULINO B N, BARCELOS M C S, et al. Biotransformation of α-and β-pinene into flavor compounds[J]. Applied Microbiology and Biotechnology,2017,101(5):1805−1817. doi: 10.1007/s00253-016-8066-7
|
[72] |
LEE S, KIM S, HONG C, et al. Biotransformation of (-)-α-Pinene by whole cells of White Rot Fungi, Ceriporia sp. ZLY-2010 and Stereum hirsutum[J]. Mycobiology,2015,43(3):297−302. doi: 10.5941/MYCO.2015.43.3.297
|
[73] |
MOHAMED-ELAMIR F H, TARIK A M, ABDELSAMED I E, et al. Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review[J]. Journal of Advanced Research,2015,6(1):17−33. doi: 10.1016/j.jare.2014.11.009
|
[74] |
CATALDO V F, LÓPEZ J, CÁRCAMO M, et al. Chemical vs. biotechnological synthesis of C13-apocarotenoids: Current methods, applications and perspectives[J]. Applied Microbiology and Biotechnology,2016,100(13):5703−5718. doi: 10.1007/s00253-016-7583-8
|
[75] |
ALOUM L, SEMREEN M H, ALTEL T H, et al. Metabolic conversion of β-pinene to β-ionone in rats[J]. Xenobiotica,2021,51(12):21−23.
|
[76] |
API A M, BELSITO D, BHATIA S, et al. RIFM fragrance ingredient safety assessment, α-ionone, CAS Registry Number 127-41-3[J]. Food and Chemical Toxicology,2016,97:S1−S10. doi: 10.1016/j.fct.2015.12.010
|
[77] |
BELSITO D, BICKERS D, BRUZE M, et al. A toxicologic and dermatologic assessment of ionones when used as fragrance ingredients[J]. Food and Chemical Toxicology,2007,45(1):S130−S167. doi: 10.1016/j.fct.2007.09.067
|
[78] |
BUCHBAUER G, JIROVETZ L, JÄGER W, et al. Fragrance compounds and essential oils with sedative effects upon inhalation[J]. Journal of Pharmaceutical Sciences,1993,82(6):660−664. doi: 10.1002/jps.2600820623
|
[79] |
JECFA. Safety Evaluation of Certain Food Additives and Contaminants. WHO food additive series 42: Ionones and structurally related substances[C]. The Fifty-first Meeting of the Joint FAO/WHO Expert Committee on Food Additives, 1999: 335–352.
|
[80] |
OSER B L, CARSON S, OSER M. Toxicological tests on flavouring matters[J]. Food and Cosmetics Toxicology,1965,3(4):563−569.
|
1. |
周良欢,康宁波,张宏博,瞿前进,张军. 真空预冷对鲜枸杞压缩力学性质的影响及有限元模拟. 食品与发酵工业. 2025(03): 225-233 .
![]() |