GE Yiqing, TONG Tao. Research Progress on Bioactivities of Food Flavor α-Ionone[J]. Science and Technology of Food Industry, 2022, 43(20): 481−488. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050260.
Citation: GE Yiqing, TONG Tao. Research Progress on Bioactivities of Food Flavor α-Ionone[J]. Science and Technology of Food Industry, 2022, 43(20): 481−488. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050260.

Research Progress on Bioactivities of Food Flavor α-Ionone

More Information
  • Received Date: May 20, 2022
  • Available Online: August 11, 2022
  • α-Ionone is a naturally occurring flavor compound present in various flowers, fruits, and vegetables. It has violet floral fragrance and high commercial value, and now is widely used in the food and pharmaceutical industries. Current studies have shown that in addition to its properties of aroma, α-ionone also exerts a wide range of bioactivities, such as antioxidant, anti-inflammatory, antibacterial, apoptosis inducing and cell cycle blocking, anti-pest, skin damage repair, muscle atrophy alleviating, and allelopathic effects. Here, this review summarizes and discusses the latest research on the basic information and the bioactivities of α-ionone in order to provide scientific basis for the development and application of α-ionone in food, medicine, and biological fields.
  • [1]
    ALOUM L, ALEFISHAT E, ADEM A, et al. Ionone is more than a violet's fragrance: A review[J]. Molecules,2020,25(24):5822. doi: 10.3390/molecules25245822
    [2]
    LUKIN I, JACH G, WINGARTZ I, et al. Recovery of natural α-ionone from fermentation broth[J]. Journal of Agricultural and Food Chemistry,2019,67(49):13412−13419. doi: 10.1021/acs.jafc.8b07270
    [3]
    LALKO J, LAPCZYNSKI A, MCGINTY D, et al. Fragrance material review on ionone[J]. Food and Chemical Toxicology,2007,45(1):S251−S257. doi: 10.1016/j.fct.2007.09.065
    [4]
    GONÇALVES A C, CAMPOS G, PINTO E, et al. Essential and non-essential elements, and volatile organic compounds for the discrimination of twenty-three sweet cherry cultivars from Fundão, Portugal[J]. Food Chemistry,2022,367(1):130503.
    [5]
    SILVIA L, MINE O, ULRICH K, et al. Processing of raspberries to dried fruit foam: Impact on major odorants[J]. European Food Research and Technology,2020,246(12):2537−2548. doi: 10.1007/s00217-020-03595-9
    [6]
    KAI C, JINGFANG W, LIYAN M, et al. Dynamic changes in norisoprenoids and phenylalanine-derived volatiles in off-vine Vidal blanc grape during late harvest[J]. Food Chemistry,2019,289(8):645−656.
    [7]
    MU B, ZHU Y, LV H P, et al. The enantiomeric distributions of volatile constituents in different tea cultivars[J]. Food Chemistry,2018,265(11):329−336.
    [8]
    OLADIPUPO A L, SUNKANMI E S, ADESOLA A O, et al. Volatile constituents and insecticidal activity of essential oil of Margaritaria discoidea (Baill. ) G. L. Webster[J]. Journal of Scientific Research and Reports,2016, 11(6):1−6.
    [9]
    SZILVIA C, ÉVA H B, ERZSÉBET H, et al. Analysis of volatile constituents of Ginkgo leaf[J]. Natural Product Communications,2019,14(6):1−8.
    [10]
    LI Y, KONG D, LLIANG H, et al. Alkaloid content and essential oil composition of Mahonia breviracema cultivated under different light environments[J]. Journal of Applied Botany and Food Quality,2018,91:171−179.
    [11]
    OLADIPUPO A L, ISIAKA A O, FAITH S G, et al. Chemical composition and insecticidal activity of essential oils of four varieties of Codiaeum variegatum (L.) from Nigeria[J]. Journal of Essential Oil Bearing Plants,2018,21(3):840−847.
    [12]
    辛秀兰, 张强, 赵新颖, 等. 主成分分析法评价树莓中挥发性香气成分气味活度值[J]. 食品安全质量检测学报,2022,13(2):395−403. [XIN X L, ZHANG Q, ZHAO X Y, et al. Evaluation of the relative odor activity value of volatile aroma components in Rubus corchorifolious fruits by principal components analysis[J]. Journal of Food Safety & Quality,2022,13(2):395−403. doi: 10.19812/j.cnki.jfsq11-5956/ts.2022.02.052
    [13]
    OKHALE E S, IGWE R O, EGHAREVBA O H, et al. GC-MS analyses of the volatile oil constituents of the leaf of Landolphia owariensis P. Beauv (Apocynaceae)[J]. European Journal of Medicinal Plants,2016,13(2):1−5.
    [14]
    LIU Q, LI D, WANG W, et al. Chemical composition and antioxidant activity of essential oils and methanol extracts of different parts from Juniperus rigida Siebold & Zucc[J]. Chemistry & Biodiversity,2016,13(9):1240−1250.
    [15]
    SHI Y, WANG M, DONG Z, et al. Volatile components and key odorants of Chinese yellow tea (Camellia sinensis)[J]. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,2021,146(33):111512.
    [16]
    WANG B, CHEN H, QU F, et al. Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude region by GC-MS and GC-O analysis[J]. European Food Research and Technology,2021,248(3):647−657.
    [17]
    FU J X, DAN H, WANG Y G, et al. Identification of floral aromatic volatile compounds in 29 cultivars from four groups of Osmanthus fragrans by gas chromatography–mass spectrometry[J]. Horticulture, Environment, and Biotechnology,2019,60(4):611−623. doi: 10.1007/s13580-019-00153-5
    [18]
    DUARTE L P, CAMARGO K C, VIDAL D M, et al. Chemodiversity of essential oils from nine species of Celastraceae[J]. Chemistry & Biodiversity,2020,17(5):e2000107.
    [19]
    LIZAMA V, PÉREZ-ÁLVAREZ E P, INTRIGLIOLO D S, et al. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: II. Wine, skins, seeds, and grape aromatic composition[J]. Agricultural Water Management,2021,256(3):107078.
    [20]
    CHENG G, LI Y, QI S, et al. SlCCD1A Enhances the aroma quality of tomato fruits by promoting the synthesis of carotenoid-derived volatiles[J]. Foods,2021,10(11):2678. doi: 10.3390/foods10112678
    [21]
    BESADA C, SANCHEZ G, GIL R, et al. Volatile metabolite profiling reveals the changes in the volatile compounds of new spontaneously generated loquat cultivars[J]. Food Research International,2017,100(1):234−243.
    [22]
    CHEN Q, ZHU Y, YAN H, et al. Identification of aroma composition and key odorants contributing to aroma characteristics of white teas[J]. Molecules,2020,25(24):6050. doi: 10.3390/molecules25246050
    [23]
    HE C J, LI Z Y, LIU H X, et al. Characterization of the key aroma compounds in Semnostachya menglaensis Tsui by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis[J]. Food Research International,2020,131(5):108948.
    [24]
    SCHOLTES C, NIZET S, MASSART H, et al. Occurrence of theaspirane and its odorant degradation products in hop and beer[J]. Journal of Agricultural and Food Chemistry,2015,63(37):8247−8253. doi: 10.1021/acs.jafc.5b03195
    [25]
    AHMED A, ABD E E G, YASSER E, et al. Essential oil of Bassia muricata: Chemical characterization, antioxidant activity, and allelopathic effect on the weed Chenopodium murale[J]. Saudi Journal of Biological Sciences,2020,27(7):1900−1906. doi: 10.1016/j.sjbs.2020.04.018
    [26]
    MICHAEL W. The Merck index: An encyclopedia of chemicals, drugs, and biologicals [J]. Drug Development Research, 2013, 74(5): 339.
    [27]
    YAN X, WANG W, CHEN Z, et al. Quality assessment and differentiation of Aucklandiae radix and Vladimiriae radix based on GC-MS fingerprint and chemometrics analysis: Basis for clinical application[J]. Analytical and Bioanalytical Chemistry,2020,412(7):1535−1549. doi: 10.1007/s00216-019-02380-2
    [28]
    WANG B, MENG Q, XIAO L, et al. Characterization of aroma compounds of Pu-erh ripen tea using solvent assisted flavor evaporation coupled with gas chromatography-mass spectrometry and gas chromatography-olfactometry[J]. Food Science and Human Wellness,2022,11(3):618−626. doi: 10.1016/j.fshw.2021.12.018
    [29]
    袁金梅, 罗靖, 朱琳琳, 等. 3个桂花品种花瓣游离态和糖苷态香气成分[J]. 林业科学,2021,57(8):33−42. [YUAN J M, LUO J, ZHU L L, et al. Free and glycosylated aroma components in petals of three osmanthus fragrans cultivars[J]. Scientia Silvae Sinicae,2021,57(8):33−42.
    [30]
    HOSSEN K, IWASAKI A, SUENAGA K, et al. Phytotoxicity of the novel compound 3-hydroxy-4-oxo-β-dehydroionol and compound 3-oxo-α-ionone from Albizia richardiana (Voigt.) King & Prain[J]. Environmental Technology & Innovation,2021,23:101779.
    [31]
    YOSHIDA Y, HARAGUCHI D, UKUDAHOSOKAWA R, et al. Synthesis and activity of 3-oxo-α-ionone analogs as male attractants for the solanaceous fruit fly, Bactrocera latifrons (Diptera: Tephritidae)[J]. Bioscience, Biotechnology, and Biochemistry,2021,85(12):2360−2367. doi: 10.1093/bbb/zbab166
    [32]
    KAUR J, GULATI M, SINGH S K, et al. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential[J]. Trends in Food Science & Technology,2022,122(2):187−200.
    [33]
    GENG R, KANG S G, HUANG K, et al. Boosting the photoaged skin: The potential role of dietary components[J]. Nutrients,2021,13(5):1691. doi: 10.3390/nu13051691
    [34]
    TONG T, PARK J, MOON Y, et al. α-Ionone protects against uvb-induced photoaging in human dermal fibroblasts[J]. Molecules,2019,24(9):1084.
    [35]
    TONG T, KIM M, PARK T. α-Ionone attenuates high-fat diet-induced skeletal muscle wasting in mice via activation of cAMP signaling[J]. Food & Function,2019,10(2):1167−1178.
    [36]
    SANZ G, LERAY I, GRÉBERT D, et al. Structurally related odorant ligands of the olfactory receptor OR51E2 differentially promote metastasis emergence and tumor growth[J]. Oncotarget,2017,8(3):4330−4341. doi: 10.18632/oncotarget.13836
    [37]
    WOLF S, JOVANCEVIC N, GELIS L, et al. Dynamical binding modes determine agonistic and antagonistic ligand effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR)[J]. Scientific Reports,2017,7(1):16007. doi: 10.1038/s41598-017-16001-4
    [38]
    GELIS L, JOVANCEVIC N, VEITINGER S, et al. Functional characterization of the Odorant Receptor 51E2 in human melanocytes[J]. The Journal of Biological Chemistry,2016,291(34):17772−17786. doi: 10.1074/jbc.M116.734517
    [39]
    PRONIN A, SLEPAK V. Ectopically expressed olfactory receptors OR51E1 and OR51E2 suppress proliferation and promote cell death in a prostate cancer cell line[J]. Journal of Biological Chemistry,2021,296:100475. doi: 10.1016/j.jbc.2021.100475
    [40]
    李一澍, 姚逸萍, 黄和强, 等. 萜烯类化合物基于细胞自噬的初步探究[J]. 食品与发酵工业: 1−13[2022-08-10]. DOI:10.13995/j.cnki.11-1802/ts. 030048.

    LI Y S, YAO Y P, HUANG H Q, et al. Preliminary study of terpenes based on autophagy[J]. Food and Fermentation Industries: 1−13[2022-08-10]. DOI: 10.13995/j.cnki.11-1802/ts.030048.
    [41]
    尹佳雯, 竺凯琪, 叶冰琪, 等. 蓝藻挥发物α-紫罗酮诱导莱茵衣藻细胞程序性死亡[J]. 微生物学报,2021,61(9):2883−2890. [YIN J W, ZHU K Q, YE B Q, et al. Programmed cell death in Chlamydomonas reinhardtii induced by cyanobacterial volatile α-ionone[J]. Acta Microbiologica Sinica,2021,61(9):2883−2890.
    [42]
    ANTONINO P, ARMANDO Z, VALERIA R, et al. Polyphenolic profile and targeted bioactivity of methanolic extracts from mediterranean ethnomedicinal plants on human cancer cell lines[J]. Molecules,2016,21(4):395. doi: 10.3390/molecules21040395
    [43]
    ONORATI A V, DYCZYNSKI M, OJHA R, et al. Targeting autophagy in cancer[J]. Cancer,2018,124(16):3307−3318. doi: 10.1002/cncr.31335
    [44]
    GUERVILLE F, DE SOUTO B P, ADER I, et al. Revisiting the hallmarks of aging to identify markers of biological age[J]. The Journal of Prevention of Alzheimer's Disease,2020,7(1):56−64.
    [45]
    HECKMANN B L, TEUBNER B J W, BOADA R E, et al. Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease[J]. Science Advances,2020,6(33):eabb9036. doi: 10.1126/sciadv.abb9036
    [46]
    FANG Z, LAURA L, SALLY O N, et al. Insecticide resistance and management strategies in urban ecosystems[J]. Insects,2016,7(1):2. doi: 10.3390/insects7010002
    [47]
    颜改兰, 王圣印. 西花蓟马对烯啶虫胺、噻虫胺和噻虫嗪的抗性风险和抗性稳定性[J]. 应用生态学报,2020,31(10):3289−3295. [YAN G L, WANG S Y. Resistance risk and resistance stability of Frankliniella occidentalis to nitenpyram, clothianidin and thiamethoxam[J]. Chinese Journal of Applied Ecology,2020,31(10):3289−3295.
    [48]
    MURATA M, KOBAYASHI T, SEO S. α-Ionone, an apocarotenoid, induces plant resistance to western flower thrips, Frankliniella occidentalis, independently of jasmonic acid[J]. Molecules,2019,25(1):17. doi: 10.3390/molecules25010017
    [49]
    GUARINO S, BASILE S, ARIF M A, et al. Odorants of capsicum spp. dried fruits as candidate attractants for Lasioderma serricorne F. (Coleoptera: Anobiidae)[J]. Insects,2021,12(1):61. doi: 10.3390/insects12010061
    [50]
    ISHIDA T, ENOMOTO H, NISHIDA R. New attractants for males of the Solanaceous fruit fly Bactrocera latifrons[J]. Journal of Chemical Ecology,2008,34(12):1532−1535. doi: 10.1007/s10886-008-9562-8
    [51]
    QU C, YANG Z K, WANG S, et al. Binding affinity characterization of four antennae-enriched odorant-binding proteins from Harmonia axyridis (Coleoptera: Coccinellidae)[J]. Frontiers in Physiology,2022,13:829766. doi: 10.3389/fphys.2022.829766
    [52]
    MARCELA D F S, VICENTE P C, ALINE F B, et al. Medicinal plant volatiles applied against the root-knot nematode Meloidogyne incognita[J]. Crop Protection,2020,130:105057. doi: 10.1016/j.cropro.2019.105057
    [53]
    LI J, CHEN L, CHEN Q, et al. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds[J]. Scientific Reports,2021,11(1):2251−2256. doi: 10.1038/s41598-021-81756-w
    [54]
    ZUO Z. Why algae release volatile organic compounds-the emission and roles[J]. Frontiers in Microbiology,2019,10:491. doi: 10.3389/fmicb.2019.00491
    [55]
    HOSSEN K, DAS K R, ASATO Y, et al. Allelopathic activity and characterization of allelopathic substances from Elaeocarpus floribundus Blume leaves for the development of bioherbicides[J]. Agronomy,2021,12(1):57. doi: 10.3390/agronomy12010057
    [56]
    GUO C, SHAN Y, YANG Z, et al. Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel[J]. Journal of the Science of Food and Agriculture,2020,100(6):2664−2674. doi: 10.1002/jsfa.10297
    [57]
    LIU D K, XU C C, ZHANG L, et al. Evaluation of bioactive components and antioxidant capacity of four celery (Apium graveolens L.) leaves and petioles[J]. International Journal of Food Properties,2020,23(1):1097−1109. doi: 10.1080/10942912.2020.1778027
    [58]
    TIAN Y, CHENG C, WEI Y, et al. The role of exosomes in inflammatory diseases and tumor-related inflammation[J]. Cells,2022,11(6):1005. doi: 10.3390/cells11061005
    [59]
    AVOSEH O N, MTUNZI F M, OGUNWANDE I A, et al. Albizia lebbeck and Albizia zygia volatile oils exhibit anti-nociceptive and anti-inflammatory properties in pain models[J]. Journal of Ethnopharmacology,2021,268:113676. doi: 10.1016/j.jep.2020.113676
    [60]
    ZHU H, SUN C, TONG Y, et al. Insight on the relationship between the compositions and antimicrobial activities of Osmanthus fragrans Lour. (Oleaceae family) essential oils by multivariable analysis[J]. European Food Research and Technology,2021,247(7):1737−1744. doi: 10.1007/s00217-021-03744-8
    [61]
    HERRERO M, IBÁÑEZ E, CIFUENTES A, et al. Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials[J]. Journal of Food Protection,2006,69(10):2471−2477. doi: 10.4315/0362-028X-69.10.2471
    [62]
    KAUSHIK K P, VARSHNEY V K, KUMAR P, et al. Microwave-assisted synthesis, characterization, and antimicrobial activity of some odorant Schiff bases derived from naturally occurring carbonyl compounds and anthranilic acid[J]. Synthetic Communications,2016,46(24):2053−2062. doi: 10.1080/00397911.2016.1245749
    [63]
    ZHANG C, CHEN X, LINDLEY N D, et al. A ''plug-n-play'' modular metabolic system for the production of apocarotenoids[J]. Biotechnology and Bioengineering,2018,115(1):174−183. doi: 10.1002/bit.26462
    [64]
    AKEMI O. Carotenoid cleavage dioxygenases and their apocarotenoid products in plants[J]. Plant Biotechnology,2009,26(4):351−358. doi: 10.5511/plantbiotechnology.26.351
    [65]
    QI Z, TONG X, BU S, et al. Cloning and characterization of a novel carotenoid cleavage dioxygenase 1 from Helianthus annuus[J]. Chemistry & Biodiversity,2021,19(1):e202100694.
    [66]
    ZHONG Y, PAN X, WANG R, et al. ZmCCD10a encodes a distinct type of carotenoid cleavage dioxygenase and enhances plant tolerance to low phosphate[J]. Plant Physiology,2020,184(1):374−392. doi: 10.1104/pp.20.00378
    [67]
    CENGIZ Ç. Biotransformation of terpene and terpenoid derivatives by Aspergillus niger NRRL 326[J]. Biologia,2020,75(9):1473−1481. doi: 10.2478/s11756-020-00459-1
    [68]
    LASHBROOKE J G, YOUNG P R, DOCKRALL S J, et al. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family[J]. BMC Plant Biology,2013,13(1):156. doi: 10.1186/1471-2229-13-156
    [69]
    CHEN X, SHUKAL S, ZHANG C. Integrating enzyme and metabolic engineering tools for enhanced α-ionone production[J]. Journal of Agricultural and Food Chemistry,2019,67(49):13451−13459. doi: 10.1021/acs.jafc.9b00860
    [70]
    CZAJKA J J, KAMBHAMPATI S, TANG J Y, et al. Application of stable isotope tracing to elucidate metabolic dynamics during Yarrowia lipolytica α-ionone fermentation[J]. iScience,2020,23(2):100854. doi: 10.1016/j.isci.2020.100854
    [71]
    VESPERMANN K A C, PAULINO B N, BARCELOS M C S, et al. Biotransformation of α-and β-pinene into flavor compounds[J]. Applied Microbiology and Biotechnology,2017,101(5):1805−1817. doi: 10.1007/s00253-016-8066-7
    [72]
    LEE S, KIM S, HONG C, et al. Biotransformation of (-)-α-Pinene by whole cells of White Rot Fungi, Ceriporia sp. ZLY-2010 and Stereum hirsutum[J]. Mycobiology,2015,43(3):297−302. doi: 10.5941/MYCO.2015.43.3.297
    [73]
    MOHAMED-ELAMIR F H, TARIK A M, ABDELSAMED I E, et al. Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review[J]. Journal of Advanced Research,2015,6(1):17−33. doi: 10.1016/j.jare.2014.11.009
    [74]
    CATALDO V F, LÓPEZ J, CÁRCAMO M, et al. Chemical vs. biotechnological synthesis of C13-apocarotenoids: Current methods, applications and perspectives[J]. Applied Microbiology and Biotechnology,2016,100(13):5703−5718. doi: 10.1007/s00253-016-7583-8
    [75]
    ALOUM L, SEMREEN M H, ALTEL T H, et al. Metabolic conversion of β-pinene to β-ionone in rats[J]. Xenobiotica,2021,51(12):21−23.
    [76]
    API A M, BELSITO D, BHATIA S, et al. RIFM fragrance ingredient safety assessment, α-ionone, CAS Registry Number 127-41-3[J]. Food and Chemical Toxicology,2016,97:S1−S10. doi: 10.1016/j.fct.2015.12.010
    [77]
    BELSITO D, BICKERS D, BRUZE M, et al. A toxicologic and dermatologic assessment of ionones when used as fragrance ingredients[J]. Food and Chemical Toxicology,2007,45(1):S130−S167. doi: 10.1016/j.fct.2007.09.067
    [78]
    BUCHBAUER G, JIROVETZ L, JÄGER W, et al. Fragrance compounds and essential oils with sedative effects upon inhalation[J]. Journal of Pharmaceutical Sciences,1993,82(6):660−664. doi: 10.1002/jps.2600820623
    [79]
    JECFA. Safety Evaluation of Certain Food Additives and Contaminants. WHO food additive series 42: Ionones and structurally related substances[C]. The Fifty-first Meeting of the Joint FAO/WHO Expert Committee on Food Additives, 1999: 335–352.
    [80]
    OSER B L, CARSON S, OSER M. Toxicological tests on flavouring matters[J]. Food and Cosmetics Toxicology,1965,3(4):563−569.
  • Cited by

    Periodical cited type(1)

    1. 周良欢,康宁波,张宏博,瞿前进,张军. 真空预冷对鲜枸杞压缩力学性质的影响及有限元模拟. 食品与发酵工业. 2025(03): 225-233 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (322) PDF downloads (30) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return