MIAO Weina, ZHAO Liang. Research Progress on the Mechanism of Freeze-drying Affecting the Fermentation Activity of Lactic Acid Bacteria[J]. Science and Technology of Food Industry, 2022, 43(21): 36−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040274.
Citation: MIAO Weina, ZHAO Liang. Research Progress on the Mechanism of Freeze-drying Affecting the Fermentation Activity of Lactic Acid Bacteria[J]. Science and Technology of Food Industry, 2022, 43(21): 36−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040274.

Research Progress on the Mechanism of Freeze-drying Affecting the Fermentation Activity of Lactic Acid Bacteria

More Information
  • Received Date: April 23, 2022
  • Available Online: August 22, 2022
  • Lactic acid bacteria (LAB) are commonly used as fermentation strains or probiotics in food. The main application form of LAB in the industry is freeze-dried powder. During freeze-drying, formation of ice crystals and dehydration could damage LAB cells, resulting in decreased metabolic activity or even cell death. The viable count or fermentation activity are important quality indices of the freeze-dried powder for lactic acid bacteria. At present, viability derived freeze-drying stress response mechanisms and survival improvement technology are gained widespread attention. In this study, the factors affecting fermentation activity in freeze-drying process are reviewed. And the effects and mechanisms of cell membrane fluidity, permeability, and heterogeneity of cell membrane damage on the fermentation activity during the freeze-drying were expounded. The study provides a basis for the further clarifying mechanism of freeze-drying affecting the fermentation activity of LAB. It also promotes the development of freeze-drying technique for LAB.
  • [1]
    SADIKOGLU H, LIAPIS A I. Mathematical modelling of the primary and secondary drying stages of bulk solution freeze-drying in trays: Parameter estimation and model discrimination by comparison of theoretical results with experimental data[J]. Drying Technology,1997,15(3-4):791−810. doi: 10.1080/07373939708917262
    [2]
    CHEN H, CHEN S, LI C, et al. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying[J]. Preparative Biochemistry & Biotechnology,2015,45(5):463−475.
    [3]
    李宝坤. 乳酸杆菌冷冻干燥生理损伤机制及保护策略的研究[D]. 无锡: 江南大学, 2011.

    LI B K. Study onphysiological damage mechanism and protection strategy of Lactobacillus during freeze drying[D]. Wuxi: University of Jiangnan, 2011.
    [4]
    SANTIVARANGKNA C, WENNING M, FOERST P, et al. Damage of cell envelope of Lactobacillus helveticus during vacuum drying[J]. Journal of Applied Microbiology,2007,102(3):748−756. doi: 10.1111/j.1365-2672.2006.03123.x
    [5]
    CARVALHO A S, SILVA J, HO P, et al. Relevant factors for the preparation of freeze-dried lactic acid bacteria[J]. International Dairy Journal,2004,14(10):835−847. doi: 10.1016/j.idairyj.2004.02.001
    [6]
    冯镇, 张兰威. 变温培养对乳酸菌高密度培养的影响[J]. 中国乳品工业,2009,37(7):4−7. [FENG Z, ZHANG L W. Effect of variable temperature culture on high density culture of lactic acid bacteria[J]. China Dairy Industry,2009,37(7):4−7. doi: 10.3969/j.issn.1001-2230.2009.07.001
    [7]
    钱志浩. 通过调节细胞膜组成提高乳杆菌冻干存活率的研究[D]. 无锡: 江南大学, 2021.

    QIAN Z H. Study on improving freeze-drying survival rate of Lactobacillus by regulating cell membrane composition[D]. Wuxi: Southern Yangtze University, 2021.
    [8]
    李明慧, 尚一娜, 霍麒文, 等. 真空冷冻干燥对乳酸菌损伤机制的研究进展[J]. 食品科学,2018,39(19):273−279. [LI M H, SHANG Y N, HUO Q W, et al. Research progress on damage mechanism of cacuum freeze drying on lactic acid bacteria[J]. Food Science,2018,39(19):273−279. doi: 10.7506/spkx1002-6630-201819042
    [9]
    王继锋. 酒酒球菌胞外聚合物在冷冻干燥过程中保护作用的研究[D]. 杨凌: 西北农林科技大学, 2019.

    WANG J F. Study on the protective effect of extracellular polymers from S. cerevisiae during freeze-drying[D]. Yangling: Northwest A & F University, 2019.
    [10]
    FONSECA F, BÉAL C, CORRIEU G. Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage[J]. The Journal of Dairy Research,2000,67(1):83−90. doi: 10.1017/S002202999900401X
    [11]
    钱志浩, 崔树茂, 唐鑫, 等. 基于细胞膜脂肪酸调控提高乳杆菌冻干存活率[J]. 食品与发酵工业,2021,47(16):1−8. [QIAN Z H, CUI S M, TANG X, et al. Improving freeze-drying survival rate of Lactobacillus based on membrane fatty acid regulation[J]. Food and Fermentation Industries,2021,47(16):1−8. doi: 10.13995/j.cnki.11-1802/ts.026748
    [12]
    SELMER-OLSEN E, BIRKELAND S, SORHAUG T. Effect of protective solutes on leakage from and survival of immobilized Lactobacillus subjected to drying, storage and rehydration[J]. Journal of Applied Microbiology,1999,87(3):429−437. doi: 10.1046/j.1365-2672.1999.00839.x
    [13]
    LI H, ZHAO W, WANG H, et al. Influence of culture pH on freeze-drying viability of Oenococcus oeni and its relationship with fatty acid composition[J]. Food and Bioproducts Processing,2008,87(1):56−61.
    [14]
    于小青. 植物乳杆菌在冷冻干燥过程中生理损伤及保护策略的研究[D]. 上海: 上海理工大学, 2019.

    YU X Q. Study on physiological damage and protection strategy of Lactobacillus plantarum during freeze drying[D]. Shanghai: University of Shanghai for Science and Technology, 2019.
    [15]
    严涛, 朱建国, 姜甜, 等. 高密度发酵乳酸菌抗冻性影响因素分析[J]. 食品研究与开发,2018,39(17):209−213. [YAN T, ZHU J G, JIANG T, et al. Analysis of factors affecting frozen resistance of high density fermentation lactic acid bacteria[J]. Food Research and Development,2018,39(17):209−213. doi: 10.3969/j.issn.1005-6521.2018.17.038
    [16]
    寇佳祥, 乔建军, 朱宏吉, 等. 提高乳杆菌属冷冻干燥存活率研究进展[J/OL]. 食品与发酵工业: 1−9 [2022-04-17]. DOI: 10.13995/j.cnki.11-1802/ts.030078.

    COU J X, QIAO J J, ZHU H J, et al. Research progress on improving freeze-drying survival rate of Lactobacillus[J/OL]. Food and Fermentation Industries: 1−9 [2022-04-17]. DOI: 10.13995/j.cnki.11-1802/ts.030078.
    [17]
    YUNDA E, QUILÈS F. In situ spectroscopic analysis ofLactobacillus rhamnosus GG flow on an abiotic surface reveals a role for nutrients in biofilm development[J]. Biofouling,2019,35(5):494−507. doi: 10.1080/08927014.2019.1617279
    [18]
    尚一娜, 李明慧, 霍麒文, 等. 培养基成分对植物乳杆菌LIP-1抗冷冻性的影响[J]. 乳业科学与技术,2018,41(6):18−25. [SHANG Y N, LI M H, HUO Q W, et al. Effect of medium components on freezing resistance of Lactobacillus plantarum LIP-1[J]. Journal of Dairy Science and Technology,2018,41(6):18−25. doi: 10.15922/j.cnki.jdst.2018.06.004
    [19]
    E J J, MA R Z, CHEN Z C, et al. Improving the freeze-drying survival rate of Lactobacillus plantarum LIP-1 by increasing biofilm formation based on adjusting the composition of buffer salts in medium[J]. Food Chemistry,2021,338:128134. doi: 10.1016/j.foodchem.2020.128134
    [20]
    李明慧, 尚一娜, 霍麒文, 等. 培养条件对植物乳杆菌LIP-1抗冷冻活性的影响[J]. 中国食品学报,2019,19(11):70−78. [LI M H, SHANG Y N, HUO Q W, et al. Effect of culture conditions on antifreezing activity of Lactobacillus plantarum LIP-1[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(11):70−78. doi: 10.16429/j.1009-7848.2019.11.009
    [21]
    王晓萌, 甄妮, 田启远, 等. 冷休克处理提高嗜酸乳杆菌的冻干存活率[J]. 中国食品学报,2021,21(3):203−209. [WANG X M, ZHEN N, TIAN Q Y, et al. Improvement of freeze-drying survival rate of Lactobacillus acidophilus by cold shock treatment[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(3):203−209. doi: 10.16429/j.1009-7848.2021.03.023
    [22]
    杨婕, 郭金凤, 李宝坤, 等. 酸-冷交互胁迫对保护冷冻干燥发酵乳杆菌活性的作用[J]. 食品科学,2020,41(2):101−106. [YANG J, GUO J F, LI B K, et al. Protective effect of acid-cold interaction stress on activity of Lactobacillus fermented by freeze drying[J]. Food Science,2020,41(2):101−106. doi: 10.7506/spkx1002-6630-20181228-343
    [23]
    WANG J F, LING H, WEI A, et al. Lyoprotective effect of soluble extracellular polymeric substances from Oenococcus oeni during its freeze-drying process[J]. Process Biochemistry,2019,84:205−212. doi: 10.1016/j.procbio.2019.05.026
    [24]
    王洁, 黄传伟, 安源, 等. 真空冷冻干燥的工艺流程[J]. 医疗卫生装备,2012,33(9):90−91. [WANG J, HUANG C W, AN Y, et al. Process of vacuum freeze-drying[J]. Chinese Medical Equipment Journal,2012,33(9):90−91.
    [25]
    龚虹, 马征途, 冯谦, 等. 植物乳杆菌发酵、冻干工艺及其益生特性的研究[J]. 中国微生态学杂志,2017,29(5):526−530. [GONG H, MA Z T, FENG Q, et al. Study on fermentation, freeze-drying and probiotic characteristics of Lactobacillus plantarum[J]. Chinese Journal of Microecology,2017,29(5):526−530. doi: 10.13381/j.cnki.cjm.201705007
    [26]
    徐长隆, 王雅丽, 范翠翠, 等. 不同冻干工艺对植物乳杆菌H0808活菌数的影响[J]. 食品安全导刊,2019(6):133. [XU C L, WANG Y L, FAN C C, et al. Effect of different freeze-drying processes on viable count of Lactobacillus H0808[J]. China Food Safety Magazine,2019(6):133. doi: 10.16043/j.cnki.cfs.2019.06.108
    [27]
    杨大恒, 付健, 李晓燕. 食品红外辅助冷冻干燥技术的研究进展[J]. 包装工程,2021,42(3):100−106. [YANG D H, FU J, LI X Y. Research progress of food infrared assisted freeze drying technology[J]. Packaging Engineering,2021,42(3):100−106. doi: 10.19554/j.cnki.1001-3563.2021.03.014
    [28]
    李让, 葛绍阳, 刘松玲等. 副干酪乳杆菌L9直投式深冷发酵剂制备工艺研究[J]. 中国奶牛,2015(17):51−55. [LI R, GE S Y, LIU S L, et al. Study on preparation technology of direct-cast cryogenic fermentation ofLactobacillus paracasei L9[J]. China Dairy Cattle,2015(17):51−55. doi: 10.3969/j.issn.1004-4264.2015.17.014
    [29]
    黄刚, 金刚. 真空冷冻干燥乳酸菌的研究进展[J]. 食品安全导刊,2022(16):148−150. [HUANG G, JIN G. Research progress of vacuum freeze-drying lactic acid bacteria[J]. China Food Safety Magazine,2022(16):148−150. doi: 10.16043/j.cnki.cfs.2022.16.035
    [30]
    ROMANO N, MARRO M, MARSAL M, et al. Fructose derived oligosaccharides prevent lipid membrane destabilization and DNA conformational alterations during vacuum-drying of Lactobacillus delbrueckii subsp. bulgaricus[J]. Food Research International,2021:143.
    [31]
    YUSTE A, AROSEMENA E L, CALVO M, et al. Study of the probiotic potential and evaluation of the survival rate of Lactiplantibacillus plantarum lyophilized as a function of cryoprotectant[J]. Scientific Reports,2021,11(1):19078. doi: 10.1038/s41598-021-98723-0
    [32]
    公丕民. 保加利亚乳杆菌喷雾干燥过程中损伤机制及保护方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    GONG P M. Damage mechanism and protection methods of L. bulgaria during spray drying[D]. Harbin: Harbin Institute of Technology, 2019.
    [33]
    杨友馨, 王瑞雪, 王俊国. 海藻糖对乳酸菌保护机制的研究进展[J]. 乳业科学与技术,2021,44(6):45−50. [YANG Y X, WANG R X, WANG J G. Progress in research on the protective mechanism of trehalose on lactic acid bacteria[J]. Journal of Dairy Science and Technology,2021,44(6):45−50. doi: 10.15922/j.cnki.jdst.2021.06.009
    [34]
    TURUVEKERE S L, BASAVARAJ M. Statistical modelling for optimized lyophilization of Lactobacillus acidophilus strains for improved viability and stability using response surface methodology[J]. AMB Express,2018,8(1):129. doi: 10.1186/s13568-018-0659-3
    [35]
    HUANG J J, CHEUNG P C K. Cold stress treatment enhances production of metabolites and biodiesel feedstock in porphyridium cruentum via adjustment of cell membrane fluidity[J]. The Science of the Total Environment,2021,780:146612−146612. doi: 10.1016/j.scitotenv.2021.146612
    [36]
    张秉胜, 李锦, 张永立. 乳酸菌发酵后处理工艺研究[J]. 现代食品,2021(11):50−51, 57. [ZHANG B S, LI J, ZHANG Y L. Study on post-fermentation process of lactic acid bacteria[J]. Modern Food,2021(11):50−51, 57. doi: 10.16736/j.cnki.cn41-1434/ts.2021.11.015
    [37]
    刘飞, 张艳艳, 张金华, 等. 普鲁兰多糖作为冻干保护剂对乳酸菌的影响[J]. 药物生物技术,2020,27(6):501−505. [LIU F, ZHANG Y Y, ZHANG J H, et al. The effect of pullulan polysaccharides as freeze-protector on lactic acid bacteria[J]. Pharmaceutical Biotechnology,2020,27(6):501−505. doi: 10.19526/j.cnki.1005-8915.20200602
    [38]
    杨辉, 闫晓哲, 杜姣姣, 等. 响应面法优化乳酸菌冻干保护剂配方[J]. 陕西科技大学学报,2018,36(2):31−38. [YANG H, YAN X Z, DU J J, et al. Optimization of cryoprotectant formulation for lactic acid bacteria by response surface methodology[J]. Journal of Shaanxi University of Science & Technology,2018,36(2):31−38. doi: 10.3969/j.issn.1000-5811.2018.02.008
    [39]
    辛明, 李昌宝, 李杰民, 等. 植物乳杆菌冻干保护剂的优化研究[J]. 食品科技,2021,46(2):1−9. [XIN M, LI C B, LI J M, et al. Optimization of cryoprotectant for Lactobacillus plantarum[J]. Food Science and Technology,2021,46(2):1−9. doi: 10.13684/j.cnki.spkj.2021.02.001
    [40]
    赵延胜, 吴超, 王慧, 等. 不同保护剂影响植物乳杆菌冻干菌粉发酵活力的研究[J]. 食品研究与开发,2019,40(12):19−24. [ZHAO Y S, WU C, WANG H, et al. Effect of different protective agents on fermentation activity of Lactobacillus plantarum frozen-dried powder[J]. Food Research and Development,2019,40(12):19−24. doi: 10.3969/j.issn.1005-6521.2019.12.004
    [41]
    李周勇, 王凡, 栾少萌, 等. 嗜热链球菌MN002冻干菌粉的制备工艺[J]. 中国乳品工业,2019,47(12):19−24. [LI Z Y, WANG F, LUAN S M, et al. Preparation of freeze-dried powder of Streptococcus thermophilus MN002[J]. China Dairy Industry,2019,47(12):19−24.
    [42]
    CHENG Z Y, YAN X,  WU J Y, et al. Effects of freeze drying in complex lyoprotectants on the survival, and membrane fatty acid composition of Lactobacillus plantarum L1 and Lactobacillus fermentum L2[J]. Cryobiology,2022,105:1−9. doi: 10.1016/j.cryobiol.2022.01.003
    [43]
    李晶晶, 王效禹, 李娟, 等. 植物乳杆菌冷冻干燥保护剂筛选及加速储存稳定性研究[J]. 饲料研究,2021,44(6):97−100. [LI J J, WANG X Y, LI J, et al. Screening of cryoprotectants for L. plantarum freeze-drying and study on accelerated storage stability[J]. Feed Research,2021,44(6):97−100. doi: 10.13557/j.cnki.issn1002-2813.2021.06.023
    [44]
    马雁, 沈桂奇, 陶志强, 等. 贮藏温度对真空冻干发酵剂发酵乳杆菌grx07活性的影响[J]. 食品工业科技,2020,41(2):84−88, 94. [MA Y, SHEN G Q, TAO Z Q, et al. Effect of storage temperature on the activity ofLactobacillus grx07 fermented by vacuum freeze-drying starter[J]. Science and Technology of Food Industry,2020,41(2):84−88, 94.
    [45]
    IBOURAHEMA C, ELISÉE K K, ELISE N G, et al. Lyophilization (drying method) cause serious damages to the cell viability of lactic acid bacteria[J]. Annual Research & Review in Biology,2018,24(4):1−15.
    [46]
    张晓宁. 不同干燥方式及贮藏环境对植物乳杆菌LIP-1活性影响的研究[D]. 内蒙古: 内蒙古农业大学, 2019.

    ZHANG X N. Effects of different drying methods and storage environments on LIP-1 activity of L. plantarum[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2019
    [47]
    COSTA E, USALL J, TEIXIDÓ N, et al. Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying[J]. Journal of Applied Microbiology,2000,89(5):793−800. doi: 10.1046/j.1365-2672.2000.01182.x
    [48]
    CHAMPAGNE C P, GARDNER N, BROCHU E et al. The freeze-drying of lactic acid bacteria. A review[J]. Canadian Institute of Food Science and Technology Journal,1991,24(3-4):118−128. doi: 10.1016/S0315-5463(91)70034-5
    [49]
    朱东升. 乳酸菌冻干保活关键技术研究[D]. 杭州: 浙江大学, 2010.

    ZHU D S. Research on the key technology of freeze-drying preservation of lactic acid bacteria[D]. Hangzhou: Zhejiang University, 2010.
    [50]
    DE VALDEZ G F, DE GIORI G S,  DE RUIZ H A P, et al. Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria[J]. Applied and Environmental Microbiology,1985,50(5):1339−1341. doi: 10.1128/aem.50.5.1339-1341.1985
    [51]
    CLARISSA S, RUDI V, MICHAEL G G. Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying[J]. Cryobiology,2007,55(2):108−114. doi: 10.1016/j.cryobiol.2007.06.004
    [52]
    梁晶晶. 冷冻干燥对副干酪乳杆菌L9发酵活力的影响及其机制研究[D]. 北京: 中国农业大学, 2020.

    LIANG J J. Effects of lyophilization on fermentation activity of Lactobacillus paracasei L9 and its mechanisms[D]. Beijing: China Agricultural University, 2020.
    [53]
    张佳, 韩瑨, 吴正钧, 等. 乳酸菌抗冷胁迫作用研究进展[J]. 食品工业科技,2022,43(4):463−469. [ZHANG J, HAN J, WU Z J, et al. Research progress on cold stress resistance of lactic acid bacteria[J]. Science and Technology of Food Industry,2022,43(4):463−469. doi: 10.13386/j.issn1002-0306.2021030140
    [54]
    乔颖, 马锐, 陈志刚. 天然低共熔溶剂对冷冻干燥期间嗜热链球菌活力的影响[J]. 南 京农业大学学报,2018,41(5):931−938. [QIAO Y, MA R, CHEN Z G. Effect of natural eutectic solvents on the activity of Streptococcus thermophilus during freeze-drying[J]. Journal of Nanjing Agricultural University,2018,41(5):931−938.
    [55]
    王学良. 相容性溶质对L. bulgaricus 3的渗透保护作用及其对细胞膜影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    WANG X L. The osmotic protection of compatible solute on L. bulgaricus 3 and its effect on cell membrane[D]. Harbin: Harbin Institute of Technology, 2015.
    [56]
    GOLDBERG I, ESCHAR L. Stability of lactic acid bacteria to freezing as related to their fatty acid composition[J]. Applied and Environmental Microbiology,1977,33(3):489−96. doi: 10.1128/aem.33.3.489-496.1977
    [57]
    吴文茹, 汪政煜, 范梦茹, 等. 乳酸菌的抗冷冻性及冻干保护[J]. 食品工业,2017,38(5):246−249. [WU W R, WANG Z Y, FAN M R, et al. Freezing resistance and freeze-drying protection of lactic acid bacteria[J]. The Food Industry,2017,38(5):246−249.
    [58]
    YUAN Y C, MICHAEL G G. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli[J]. International Journal of Food Microbiology,2016,222:16−22. doi: 10.1016/j.ijfoodmicro.2016.01.017
    [59]
    陈境, 张晓宁, 麻丽丽, 等. 初始pH值对植物乳杆菌LIP-1抗冷冻干燥性能的影响[J]. 中国食品学报,2020,20(12):81−89. [CHEN J, ZHANG X N, MA L L, et al. Effect of initial pH value on freeze-drying resistance of L. plantarum LIP-1[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(12):81−89.
    [60]
    张晓宁, 陈境, 麻丽丽, 等. 优化培养基对冷冻干燥后植物乳杆菌LIP-1活性的影响[J]. 食品科技,2019,44(7):1−9. [ZHANG X N, CHEN J, MA L L, et al. Effect of optimized medium onactivity of Lactobacillus plantarum LIP-1 after freeze-drying[J]. Food Science and Technology,2019,44(7):1−9.
    [61]
    王飚, 田丰伟, 励建荣, 等. 冷冻干燥对乳酸菌细胞膜通透性的影响[J]. 微生物学通报,2009,36(5):684−688. [WANG B, TIAN F W, LI J R, et al. Effect of freeze drying on cell membrane permeability of lactic acid bacteria[J]. Microbiology China,2009,36(5):684−688.
    [62]
    MIMOZA B, MONIKA M, SHARAREH S, et al. Effect of lyoprotectants on β-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices[J]. LWT - Food Science and Technology,2014,57(1):276−282. doi: 10.1016/j.lwt.2014.01.011
    [63]
    焦琳, 郑晓卫, 屈晓宇, 等. 嗜热链球菌M5-5冻干保护剂配方的优化[J]. 中国酿造,2017,36(3):95−98. [JIAO L, ZHENG X W, QU X Y, et al. Optimization of cryoprotectant formulation for Streptococcus thermophilus M5-5[J]. China Brewing,2017,36(3):95−98. doi: 10.11882/j.issn.0254-5071.2017.03.020
    [64]
    BUNTHOF C J, BLOEMEN K, BREEUWER P, et al. Flow cytometric assessment of viability of lactic acid bacteria[J]. Applied and Environmental Microbiology,2001,67(5):2326−2335. doi: 10.1128/AEM.67.5.2326-2335.2001
    [65]
    LAHTINEN S J, OUWEHAND A C, REINIKAINEN J P, et al. Intrinsic properties of so-called dormant probiotic bacteria, determined by flow cytometric viability assays[J]. Applied and Environmental Microbiology,2006,72(7):5132−5134. doi: 10.1128/AEM.02897-05
    [66]
    VON WRIGHT A, SALMINEN S, et al. Probiotics: Mechanisms and established effects[J]. International Dairy Journal,1999,11(11):1195−1198.
    [67]
    SAÚL A, MÓNICA H, MANUEL R, et al. Physiological heterogeneity in Lactobacillus casei fermentations on residual yoghurt whey[J]. Process Biochemistry,2014,49(5):732−739. doi: 10.1016/j.procbio.2014.01.033
    [68]
    OLSZEWSKA M A, KOCOT A M, ANIEWSKA-TROKENHEIM U. Physiological functions at single-cell level of Lactobacillus spp. isolated from traditionally fermented cabbage in response to different pH conditions[J]. Journal of Biotechnology,2015,200:19−26. doi: 10.1016/j.jbiotec.2015.02.031
    [69]
    ZHAO Y, KNOCHEL S, SIEGUMFELDT H. Heterogeneity between and within strains of Lactobacillus brevis exposed to beer compounds[J]. Frontiers in Microbiology,2017,8:239.
    [70]
    STRAUBER H, MULLER S. Viability states of bacteria—Specific mechanisms of selected probes[J]. Cytometry Part A,2010,77A(7):623−634. doi: 10.1002/cyto.a.20920
    [71]
    RAULT A, BEAL C, GHORBAL S, et al. Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage[J]. Cryobiology,2007,55(1):35−43. doi: 10.1016/j.cryobiol.2007.04.005
    [72]
    KRAMER M, OBERMAJER N, BOGOVIC M B, et al. Quantification of live and dead probiotic bacteria in lyophilised product by real-time PCR and by flow cytometry[J]. Applied Microbiology and Biotechnology,2009,84(6):1137−47. doi: 10.1007/s00253-009-2068-7
    [73]
    LI J, SUO Y J, LIAO X Y, et al. Analysis of Staphylococcus aureus cell viability, sublethal injury and death induced by synergistic combination of ultrasound and mild heat[J]. Ultrasonics-Sonochemistry,2017,39:101−110. doi: 10.1016/j.ultsonch.2017.04.019
    [74]
    SHAO L, ZHAO Y, ZOU B, et al. Recovery and virulence factors of sublethally injured Staphylococcus aureus after ohmic heating[J]. Food Microbiology,2022,102:103899−103899. doi: 10.1016/j.fm.2021.103899
  • Cited by

    Periodical cited type(5)

    1. 汤纯,徐长隆,宋佳,余萍,苏美玲,王小海. 发酵粘液乳杆菌HCS08-005冻干粉制备工艺优化及其抗过敏功能. 中国酿造. 2025(02): 158-163 .
    2. 吴九玲. GB 4789.35《食品安全国家标准食品微生物学检验乳酸菌检验》新旧标准比较及操作疑难解析. 食品安全导刊. 2024(15): 101-104 .
    3. 娄捷嘉. 乳酸菌在冷冻干燥过程中存活率的影响因素探讨. 中外食品工业. 2024(05): 25-27 .
    4. 左梦楠,刘伟,全琦,张菊华. 保护剂对发酵乳杆菌BLHN3冻干存活率的影响. 中国食品学报. 2024(08): 178-186 .
    5. 张轶,丁同仁,王光强. 益生菌冷冻干燥保护剂的研究进展. 工业微生物. 2024(06): 91-96 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (551) PDF downloads (75) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return