LI Xiaofeng, ZHANG Lu, MA Tianxin, et al. Comparison of Peptide Composition and in Vitro Antioxidant Activity of Different Hydrolysates of Turbot Meat[J]. Science and Technology of Food Industry, 2023, 44(3): 95−101. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040222.
Citation: LI Xiaofeng, ZHANG Lu, MA Tianxin, et al. Comparison of Peptide Composition and in Vitro Antioxidant Activity of Different Hydrolysates of Turbot Meat[J]. Science and Technology of Food Industry, 2023, 44(3): 95−101. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040222.

Comparison of Peptide Composition and in Vitro Antioxidant Activity of Different Hydrolysates of Turbot Meat

More Information
  • Received Date: April 19, 2022
  • Available Online: December 02, 2022
  • To investigate the effect of ripening, simulated digestion and enzymatic hydrolysis on the antioxidant ability of turbot hydrolysis, alcalase and simulated digestion were applied to hydrolyze the raw and ripening turbot meat to prepare the raw meat alkaline protease hydrolysate, ripening meat alkaline protease hydrolysate, raw meat simulated digestion product and ripening meat simulated digestion product. The degree of hydrolysis, molecular weight distribution, amino acid composition, peptides composition and in vitro antioxidant activities were compared. The results showed that the degree of hydrolysis of the raw meat alkaline protease hydrolysate was the highest, which was 20.18%. The molecular weight (MW) distribution of four samples varied greatly, only one peptides were shared, but the amino acid composition presented insignificant difference. The MW distribution of alcalase hydrolysates were mainly lower than 1000 Da, the 2~4 peptides accounted for 64.57%~51.73% of the detected peptides sequences. While, in the simulated digestion samples, the 1000~3000 Da peptides fraction accounted for over 50%, and dominated by polypeptides (>10 length). Ripening diminished the proportion of small peptides (<6 length). In vitro antioxidant ability assays indicated that alcalase hydrolysates exhibited stronger antioxidant abilities than simulated digestion products, ripening reduced the antioxidant abilities of the raw meat alkaline protease hydrolysate. The raw meat alkaline protease hydrolysate presented the best superoxide anion and hydroxyl radical scavenging ability, as well as the highest ferric reducing ability. Therefore, alcalase is superior to simulated digestion in hydrolyzing turbot meat, ripening will ameliorate the antioxidant ability of turbot meat hydrolysates.
  • [1]
    AHN C, JE J, CHO Y. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis[J]. Food Research International,2012,49(1):92−98. doi: 10.1016/j.foodres.2012.08.002
    [2]
    CUI Q, SUN Y, GUO M. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate[J]. Food Chemistry,2022,366:130711. doi: 10.1016/j.foodchem.2021.130711
    [3]
    LV R, DONG Y, SUN N. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides[J]. Trends in Food Science & Technology,2022,122:171−186.
    [4]
    李晓杰, 李富强, 朱丽萍, 等. 生物活性肽的制备与鉴定进展[J]. 齐鲁工业大学学报,2021,35(1):23−28. [LI X J, LI F Q, ZHU L P, et al. Progress of preparation and identification of bioactive peptides[J]. Journal of Qilu University of Technology,2021,35(1):23−28. doi: 10.16442/j.cnki.qlgydxxb.2021.01.005
    [5]
    ZHANG J, LI M, DU H. Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the antioxidation mechanisms[J]. Food Chemistry,2021,337:127921. doi: 10.1016/j.foodchem.2020.127921
    [6]
    ZHANG Q, TONG X, SUI X, et al. Antioxidant activity and protective effects of alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells[J]. Food Research International,2018,111:256−264. doi: 10.1016/j.foodres.2018.05.046
    [7]
    包斐, 孙丽霞, 孙建华, 等. 长蛇鲻鱼蛋白水解制备抗氧化肽工艺研究[J]. 食品科技,2019,44(8):241−247. [BAO F, SUN L X, SUN J H, et al. Optimization of technology conditions for antioxidant peptides from protein hydrolysates of lizard fish[J]. Food Science and Technology,2019,44(8):241−247. doi: 10.13684/j.cnki.spkj.2019.08.043
    [8]
    李亚会, 李积华, 吉宏武, 等. 远东拟沙丁鱼抗氧化肽的分离纯化及结构解析[J]. 中国食品学报,2021,21(2):229−238. [LI Y H, LI J H, JI H W, et al. Isolation, purification and structural analysis of antioxidant peptides from Sardinops sagaxs[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(2):229−238. doi: 10.16429/j.1009-7848.2021.02.028
    [9]
    蔡金秀, 夏姗姗, 马佳雯, 等. 马面鱼皮胶原抗氧化肽的分离制备及稳定性研究[J]. 核农学报,2021,35(11):2569−2577. [CAI J X, XIA S S, MA J W, et al. Isolation preparation and stability of collagen antioxidant peptides from the skin of navodon septentrionalis[J]. Journal of Nuclear Agricultural Sciences,2021,35(11):2569−2577. doi: 10.11869/j.issn.100-8551.2021.11.2569
    [10]
    陈丽花, 朱楚楚, 李冉冉. 体外消化对金瓜籽抗氧化肽抗氧化活性的影响[J]. 食品科学,2019,40(3):78−86. [CHEN L H, ZHU C C, LI L L. Effect of in vitro digestion on antioxidant activity of antioxidant peptides from marrow seeds[J]. Food Science,2019,40(3):78−86. doi: 10.7506/spkx1002-6630-20170829-343
    [11]
    孙松, 胡玉龙, 吕丁, 等. 中国大菱鲆引进群体三代选育之后的收获体重遗传进展评估[J]. 中国农学通报,2021,37(35):118−123. [SUN S, HU Y L, LÜ D, et al. Evaluation of genetic gain for harvest body weight in turbot (Scophthalmus maximus, Linnaeus) after three generations[J]. Chinese Agricultural Science Bulletin,2021,37(35):118−123. doi: 10.11924/j.issn.1000-6850.casb2021-0016
    [12]
    王志, 赵峰, 王珊珊, 等. 大菱鲆鱼皮抗氧化胶原肽的制备及特性分析[J]. 食品安全质量检测学报,2020,11(22):8267−8275. [WANG Z, ZHAO F, WANG S S, et al. Preparation and characteristic analysis of antioxidant collagen peptides from turbot skins[J]. Journal of Food Safety & Quality,2020,11(22):8267−8275. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.023
    [13]
    FANG B, SUN J, MAO X. Conversion of turbot skin wastes into valuable functional substances with an ecofriendly fermentation technology[J]. Journal of Cleaner Production,2017,156:367−377. doi: 10.1016/j.jclepro.2017.04.055
    [14]
    MA T X, FU Q Q, MEI Q G, et al. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking[J]. Food Chemistry,2021,354:129589. doi: 10.1016/j.foodchem.2021.129589
    [15]
    PAPUNGKORN S, SITTIRUK R, JIRAWAT Y. Angiotensin converting enzyme (ACE) inhibitory peptides derived from the simulated in vitro gastrointestinal digestion of cooked chicken breast[J]. Journal of Functional Foods,2019,29:77−83.
    [16]
    杨文博, 张英华. 蛋白质水解度的测定方法研究[J]. 中国调味品,2014,39(3):88−90. [YANG W B, ZHANG Y H. Study on the determination methods for hydrolysis degree of protein[J]. China Condiment,2014,39(3):88−90. doi: 10.3969/j.issn.1000-9973.2014.03.022
    [17]
    国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.5-2016食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. GB 5009.6-2016 National standard for food safety Determination of protein in foods[S]. Beijing: China Standard Press, 2016.
    [18]
    李军, 罗娟, 涂宗财, 等. 鲢鱼骨胶原多肽的制备及其抗氧化活性研究[J]. 食品与发酵工业,2020,46(2):222−230. [LI J, LUO J, TU Z C, et al. Study on the preparation and antioxidant activity of collagen polypeptide from silver carp bone[J]. Food and Fermentation Industries,2020,46(2):222−230. doi: 10.13995/j.cnki.11-1802/ts.021999
    [19]
    国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.124-2016 食品安全国家标准 食品中氨基酸的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. GB 5009.124-2016 National standard for food safety Determination of amino acids in foods[S]. Beijing: China Standard Press, 2016.
    [20]
    张露, 刘鹏飞, 涂宗财, 等. 香榧不同部位提取物的抗氧化和酶抑制活性比较分析[J]. 食品科学,2018,39(10):78−83. [ZHANG L, LIU P F, TU Z C, et al. Comparison of antioxidant activity and enzyme inhibitory activity of different plant parts of Torreya grandis cv. Merrillii[J]. Food Science,2018,39(10):78−83. doi: 10.7506/spkx1002-6630-201810013
    [21]
    郭洪辉, 张怡评, 洪专, 等. 河豚鱼皮胶原寡肽螯合锌的体内体外抗氧化活性研究[J]. 食品工业科技,2021,42(5):66−71. [GUO H H, ZHANG Y P, HONG Z. Study onin vivo and in vitro antioxidant activity of collagen oligopeptide chelated zinc from puffer skin[J]. Science and Technology of Food Industry,2021,42(5):66−71.
    [22]
    朱敏方. 草鱼鱼肉抗氧化肽的制备、分离鉴定及其活性研究[D]. 南昌: 江西师范大学, 2020.

    ZHU M F. Preparation, Isolation, identification and activity of antioxidant peptides from grass carp (Ctenopharyngodon idella) muscle[D]. Nanchang: Jiangxi Normal University, 2020.
    [23]
    ZHENG Z, LI J, LI J, et al. Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes[J]. Food Hydrocolloids, 97: 105222.
    [24]
    VEYMR G, TACIAS P, BOBERTO M S, et al. Use of alcalase in the production of bioactive peptides: A review[J]. International Journal of Biological Macromolecules,2020,165:2143−2196. doi: 10.1016/j.ijbiomac.2020.10.060
    [25]
    韦婕妤, 唐善虎, 杨琪. 不同热加工方法对羊肉制品体外模拟可消化性研究[J]. 食品科技,2018,43(12):125−130. [WEI J Y, TANG S H, YANG Q. Study on the digestion of mutton products in vitro by different heat processing methods[J]. Food Science and Technology,2018,43(12):125−130. doi: 10.13684/j.cnki.spkj.2018.12.024
    [26]
    KAUR L, MAUDENS E, SINGH H. Microstructure and protein digestibility of beef: The effect of cooking conditions as used in stews and curries[J]. LWT-Food Science and Technology,2014,2(55):612−620.
    [27]
    BHAT Z F, MORTON J, DBEKHIT A E, et al. Thermal processing implications on the digestibility of meat, fish and seafood proteins[J]. Wiley,2021,20(5):4511−4548.
    [28]
    YU T, MORTON J D, CLERENS S, et al. Cooking induced protein modifications in meat[J]. Comprehensive Reviews in Food Science and Food Safety,2016,16(1):141−159.
    [29]
    BAX M, AUBRY L, FERREIRA C, et al. Cooking temperature is a key determinant of in vitro meat protein digestion rate: Investigation of underlying mechanisms[J]. Journal of Agricultural and Food Chemistry,2012,60(10):2569−2576. doi: 10.1021/jf205280y
    [30]
    马思彤, 刘静波, 张婷, 等. 体外模拟胃肠消化及碱性蛋白酶处理后蛋清肽抗氧化活性差异及肽序列解析[J]. 食品科学,2020,41(21):113−120. [MA S T, LIU J B, ZHANG T, et al. Differences in antioxidant activity and sequence analysis of egg white peptides derived from simulated gastrointestinal digestion and alkaline protease treatment[J]. Food Science,2020,41(21):113−120. doi: 10.7506/spkx1002-6630-20191024-255
    [31]
    GÓMEZ L J, GÓMEZ N, ALEGRA A. In vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates[J]. Food Research International,2019,120:52−61. doi: 10.1016/j.foodres.2019.02.029
    [32]
    WU R, WU C, HE H. Antioxidant and antifreezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease[J]. Food Chemistry,2018,248:346−352. doi: 10.1016/j.foodchem.2017.12.035
    [33]
    YIN Y, ZHOU L, PEREIRA J, et al. Insights into digestibility and peptide profiling of peef muscle proteins with different cooking methods[J]. Journal of Agricultural and Food Chemistry,2020,68(48):14243−14251. doi: 10.1021/acs.jafc.0c04054
  • Cited by

    Periodical cited type(3)

    1. 周晓,刘倩倩,伍灵芝,蒋立文,黄海,刘洋. 不同工艺对石螺肉酶解产物风味物质的影响. 中国调味品. 2024(02): 137-146 .
    2. 朱清清,马瑞娟,陈剑锋,谢友坪. 响应面法优化鱿鱼皮蛋白肽的制备工艺及其理化性质分析. 食品工业科技. 2024(07): 217-226 . 本站查看
    3. 李小锋,张露,罗晶,王思宇,温庆辉,尹红梅,涂宗财. 烹饪方式对草鱼肉蛋白消化特性及其消化产物降血压活性的影响. 食品与发酵工业. 2024(15): 186-195 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (174) PDF downloads (20) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return