ZHOU Jingqi, HUANG Qin, QIN Lingxiang, et al. Physicochemical and Digestive Properties of Yam Starch/Oat β-Glucan Blends[J]. Science and Technology of Food Industry, 2022, 43(18): 114−121. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040056.
Citation: ZHOU Jingqi, HUANG Qin, QIN Lingxiang, et al. Physicochemical and Digestive Properties of Yam Starch/Oat β-Glucan Blends[J]. Science and Technology of Food Industry, 2022, 43(18): 114−121. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040056.

Physicochemical and Digestive Properties of Yam Starch/Oat β-Glucan Blends

More Information
  • Received Date: April 07, 2022
  • Available Online: July 20, 2022
  • In order to study the effect of oat β-glucan on yam starch, the yam starch/oat β-glucan blends were prepared by rapid visco analyzer. The gelatinizing properties, thermal properties, rheological properties and digestive properties of the blends were investigated. The gelatinization analysis showed that oat β-glucan could reduce the viscosity and regeneration value of yam starch, and inhibit the short-term regeneration of yam starch. The results of thermal properties showed that the gelatinization enthalpy ΔH of blends was significantly decreased with the addition of oat β-glucan (P<0.05), and the lowest value was 7.34 J/g. Infrared spectrum analysis showed that yam starch and oat β-glucan had no covalent binding and mainly through hydrogen bond. The texture analysis showed that the addition of oat β-glucan weakened the gel structure of the blends. Static rheological properties analysis showed that the apparent viscosity of oat β-glucan decreased with the addition of oat β-glucan. Dynamic rheological analysis showed that oat β-glucan could significantly reduce the viscoelasticity of yam starch. X-ray diffraction results showed that the gelation changes the crystal type, and the relative crystallinity decreased from 38.40% to 16.30%. In addition, the addition of oat β-glucan decreased the digestibility of the blends and increased the content of resistant starch. The highest resistant starch content of samples was 49.24%. This study could provide theoretical basis for developing oat β-glucan/starch based food.
  • [1]
    LIU X X, LIU H M, FAN L Y, et al. Effect of various drying pretreatments on the structural and functional properties of starch isolated from Chinese yam (Dioscorea opposita Thumb.)[J]. International Journal of Biological Macromolecules,2019,153:1299−1309.
    [2]
    HUANG H H, JIANG Q Q, CHEN Y L, et al. Preparation, physico–chemical characterization and biological activities of two modified starches from yam (Dioscorea opposita Thunb.)[J]. Food Hydrocolloids,2016,55:244−253. doi: 10.1016/j.foodhyd.2015.11.016
    [3]
    ZHOU R, KANG Y H. Synergistic interaction of Auricularia auricula-judae polysaccharide with yam starch: Effects on physicochemical properties and in vitro starch digestibility[J]. Food Science & Biotechnology,2018,27(6):1−10.
    [4]
    LUO D, LI Y, XU B, et al. Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch[J]. Food Chemistry,2017,229:35−43. doi: 10.1016/j.foodchem.2017.02.058
    [5]
    ZHANG J, LUO K, ZHANG G. Impact of native form oat β-glucan on starch digestion and postprandial glycemia[J]. Journal of Cereal Science,2017,73:84−90. doi: 10.1016/j.jcs.2016.11.013
    [6]
    DAOU C, ZHANG H. Oat beta-glucan: its role in health promotion and prevention of diseases[J]. Comprehensive Reviews in Food Science and Food Safety,2012,11(4):355−365. doi: 10.1111/j.1541-4337.2012.00189.x
    [7]
    杨成峻, 陈明舜, 戴涛涛, 等. 燕麦β-葡聚糖功能与应用研究进展[J]. 中国食品学报,2021,21(6):301−311. [YANG C J, CHEN M S, DAI T T, et al. Research advance in function properties and application of oat β-glucan[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(6):301−311.

    YANG C J, CHEN M S, DAI T T, et al. Research advance in function properties and application of oat β-glucan[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(6): 301-311.
    [8]
    LUO Y, SHEN M Y, LI E P, et al. Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents[J]. Carbohydrate Polymers,2020,230:115713. doi: 10.1016/j.carbpol.2019.115713
    [9]
    ZHANG X Y, TONG Q Y, ZHU W X, et al. Pasting, rheological properties and gelatinization kinetics of tapioca starch with sucrose or glucose[J]. Journal of Food Engineering,2013,114(2):255−261. doi: 10.1016/j.jfoodeng.2012.08.002
    [10]
    WANG B, WANG L J, LI D, et al. Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose[J]. Carbohydrate Polymers,2009,77(3):472−481. doi: 10.1016/j.carbpol.2009.01.017
    [11]
    ZHAO Y, CHEN H H, WANG Y S, et al. Effect of sodium alginate and its guluronic acid/ mannuronic acid ratio on the physicochemical properties of high-amylose corn starch[J]. Starch- Starke,2015,68(11−12):1215−1223.
    [12]
    ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition,1992,46(2):33−50.
    [13]
    沈军, 王林, 邹恩坤. 燕麦β-葡聚糖对小麦淀粉回生特性的影响[J]. 粮食与食品工业,2020,27(5):43−48. [SHEN J, WANG L, ZOU E K. Effect of oat β-glucan on retrogradation characteristics of wheat starch[J]. Cereal and Food Industry,2020,27(5):43−48. doi: 10.3969/j.issn.1672-5026.2020.05.012

    SHEN J, WANG L, ZOU E K. Effect of oat β-Glucan on retrogradation characteristics of wheat starch[J]. Cereal and Food Industry, 2020, 27(5): 43-48. doi: 10.3969/j.issn.1672-5026.2020.05.012
    [14]
    章乐乐, 崔鑫儒, 赵创谦, 等. 青稞多糖对玉米淀粉糊化和流变特性的影响[J]. 食品与生物技术学报,2020,39(10):73−81. [ZHANG L L, CUI X R, ZHAO C Q, et al. Effect of polysaccharides from highland barely on gelatinization and rheological properties of corn starch[J]. Journal of Food Science and Biotechnology,2020,39(10):73−81. doi: 10.3969/j.issn.1673-1689.2020.10.010

    ZHANG L L, CUI X R, ZHAO C Q, et al. Effect of polysaccharides from highland barely on gelatinization and rheological properties of corn starch[J]. Journal of Food Science and Biotechnology, 2020, 39(10): 73-81. doi: 10.3969/j.issn.1673-1689.2020.10.010
    [15]
    LIU S C, Lin L H, SHEN MY, et al. Effect of Mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch[J]. International Journal of Biological Macromolecules,2018,118:945−951. doi: 10.1016/j.ijbiomac.2018.06.178
    [16]
    Wang R S, Wan J, Liu C M, et al. Pasting, thermal, and rheological properties of rice starch partially replaced by inulin with different degrees of polymerization[J]. Food Hydrocolloids,2019,92:228−232. doi: 10.1016/j.foodhyd.2019.02.008
    [17]
    李妍, 崔维建, 赵城彬, 等. 玉米淀粉-玉木耳多糖共混体系理化及结构性质[J]. 食品科学,2021,42(4):58−64. [LI Y, CUI W J, ZHAO C B, et al. Physicochemical and structural properties of corn starch agaric polysaccharide blend system[J]. Food Science,2021,42(4):58−64.

    LI Y, CUI W J, ZHAO C B, et al. Physicochemical and structural properties of corn starch agaric polysaccharide blend system [J]. Food Science, 2021, 42(4): 58-64.
    [18]
    GUNARATNE A, RANAWEERA S, CORKE H. Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin[J]. Carbohydrate Polymers,2007,70(1):112−122. doi: 10.1016/j.carbpol.2007.03.011
    [19]
    曹勇, 许秀颖, 赵城彬, 等. 新采收玉米籽粒中水分状态对淀粉热特性的影响[J]. 食品科学, 2018, 39(12): 79-84.

    CAO Y, XU X Y, ZHAO C B, et al Effect of water state in newly harvested corn grains on thermal properties of starch [J]. Food Science, 2018, 39(12): 79-84.
    [20]
    CHAISAWANG M, SUPHANTHARIKA M. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum[J]. Food Hydrocolloids,2006,20(5):641−649. doi: 10.1016/j.foodhyd.2005.06.003
    [21]
    GADKARI P V, REANEY M J T, GHOSH S. Assessment of gelation behavior of fenugreek gum and other galactomannans by dynamic viscoelasticity, fractal analysis and temperature cycle[J]. International Journal of Biological Macromolecules,2019,126:337−344. doi: 10.1016/j.ijbiomac.2018.12.132
    [22]
    张晶, 张美莉. β-葡聚糖对燕麦淀粉凝胶特性及老化的影响[J]. 中国食品学报,2021,21(8):91−101. [ZHANG J, ZHANG M L. Effects of β-glucan on gel properties and retrogradation of oat starch[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(8):91−101.

    ZHANG J, ZHANG M L. Effects of β-glucan on gel properties and retrogradation of oat starch [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(08): 91-101.
    [23]
    KONG X R, ZHU Z Y, ZHANG X J, et al. Effects of Cordyceps polysaccharides on pasting properties and in vitro starch digestibility of wheat starch[J]. Food Hydrocolloids,2020,102:105604. doi: 10.1016/j.foodhyd.2019.105604
    [24]
    豁银强, 刘松继, 陈江平, 等. 麦冬多糖对大米淀粉凝胶化及凝胶特性的影响[J]. 中国粮油学报,2020,35(11):48−53. [HUO Y Q, LIU S J, CHEN J P, et al. Effect of ophiopogon japonicus polysaccharide on gelation and properties of rice starch[J]. Journal of the Chinese Cereal and Oils,2020,35(11):48−53. doi: 10.3969/j.issn.1003-0174.2020.11.009

    HUO Y Q, LIU S J, CHEN J P, et al. Effect of ophiopogon japonicus polysaccharide on gelation and properties of rice starch[J]. Journal of the Chinese Cereal and Oils, 2020, 35(11): 48-53. doi: 10.3969/j.issn.1003-0174.2020.11.009
    [25]
    CORREA M J, ANON M C, PEREZ G T, et al. Effect of modified celluloses on dough rheology and microstructure[J]. Food Research International,2010,43(3):780−787. doi: 10.1016/j.foodres.2009.11.016
    [26]
    黄琴, 闫溢哲, 冀晓龙, 等. 不同晶型淀粉-单硬脂酸甘油酯复合物的制备及表征[J]. 食品研究与开发,2022,43(10):29−35. [HUANG Q, YAN Y Z, JI X L, et al. Preparation and characterization of different crystal types of starch- glyceryl monostearate complexes[J]. Food Research and Development,2022,43(10):29−35.

    HUANG Q, YAN Y Z, JI X L, et al. Preparation and characterization of different crystal types of starch- glyceryl monostearate complexes[J]. Food Research and Development, 2022, 43(10): 29-35.
    [27]
    谭洪卓, 谭斌, 刘明, 等. 甘薯粉丝生产中多糖胶与甘薯淀粉相互作用机理[J]. 食品科学,2008(5):49−55. [TAN H Z, TAN B, LIU M, et al. Mechanism of interaction between polysaccharide gums and sweet potato starch in production of its noodles[J]. Food Science,2008(5):49−55. doi: 10.3321/j.issn:1002-6630.2008.05.002

    TAN H Z, TAN B, LIU M, et al. Mechanism of interaction between polysaccharide gums and sweet potato starch in production of its noodles [J]. Food Science, 2008(5): 49-55. doi: 10.3321/j.issn:1002-6630.2008.05.002
    [28]
    冀晓龙, 尹明松, 赵阳, 等. 菊粉-小麦淀粉复配体系理化特性及相互作用[J]. 食品与发酵工业,2022,48(3):135−140. [JI X L, YIN M S, ZHAO Y, et al. Study on physicochemical properties of inulin-wheat starch belended systems and the interactions between the components[J]. Food and Fermentation Industries,2022,48(3):135−140. doi: 10.13995/j.cnki.11-1802/ts.028472

    JI X L, YIN M S, ZHAO Y, et al. Study on physicochemical properties of inulin-wheat starch belended systems and the interactions between the components[J]. Food and Fermentation Industries, 2022, 48(3): 135-140. doi: 10.13995/j.cnki.11-1802/ts.028472
    [29]
    BILIADERIS C G. Non-equilibrium phase transitions of aqueous starch systems[J]. Advances in Experimental Medicine and Biology,1991,302:251−273.
    [30]
    JI X L, YIN M S, HAO L R, et al. Effect of inulin on pasting, thermal, rheological properties and in vitro digestibility of pea starch gel[J]. International Journal of Biological Macromolecules,2021,193:1669−1675. doi: 10.1016/j.ijbiomac.2021.11.004
    [31]
    WU Y, CHEN Z X, LI X X, et al. Effect of tea polyphenols on the retrogradation of rice starch[J]. Food Research International,2009,42(2):221−225. doi: 10.1016/j.foodres.2008.11.001
    [32]
    SASAKI T, KOHYAMA K. Effect of non-starch polysaccharides on the in vitro digestibility and rheological properties of rice starch gel[J]. Food Chemistry,2011,127(2):541−546. doi: 10.1016/j.foodchem.2011.01.038
    [33]
    LONG C, TIAN Y Q, ZHANG Z P, et al. Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch[J]. Food Hydrocolloids,2017,63:383−390. doi: 10.1016/j.foodhyd.2016.09.021
    [34]
    REGAND A, CHOWDHURY Z, TOSH S M, et al. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility[J]. Food Chemistry,2011,129(2):297−304. doi: 10.1016/j.foodchem.2011.04.053
  • Cited by

    Periodical cited type(9)

    1. 吴军林,徐梅珍,蒋桂丽,杨华. 食品微生物学课程教学创新性探索及思考. 食品工业. 2025(02): 142-146 .
    2. 李向梅,朱月,柳春红,徐振林,雷红涛,钟青萍. 课程思政视域下“食品卫生学”案例教学改革与育人效果评价. 食品工业. 2025(02): 237-242 .
    3. 王丽娜,罗志. 土壤环境监测课程思政元素的挖掘与教学实施探索. 现代商贸工业. 2024(12): 261-263 .
    4. 隋晓楠,张妍,黄国,付昳丹,梁香玉,赵尚清,王思琦,杨爱峥,霍俊伟,江连洲. 省一流专业引领下“粮油加工副产物综合利用”课程创新创业元素的设计与实践. 食品工业科技. 2024(13): 308-314 . 本站查看
    5. 关海宁,刁小琴,刘登勇,励建荣,李学鹏,仪淑敏,范金波,赵志南. “乡村振兴”背景下食品类专业型硕士“实践驱动、多维融合、创新引领”协同培养机制的探讨. 食品工业科技. 2024(14): 371-377 . 本站查看
    6. 林鹏,宋姗姗,范金波,李学鹏,励建荣. 基于OBE教学理念对《食品免疫学》课程教学改革与实践. 食品工业科技. 2024(14): 361-370 . 本站查看
    7. 张妍,杨景旭,隋晓楠. “园艺产品采后生理及贮运加工”课程建设与创新. 食品工业. 2024(07): 221-225 .
    8. 张晶,施行健,郁舒兰. 交互设计类课程中的思政元素挖掘与融合路径探索. 设计. 2024(17): 74-77 .
    9. 解文丽,郭俊南,王晖,温清苹. 课程思政的实践探索——以《海水利用技术》为例. 广东化工. 2023(19): 170-173+151 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (256) PDF downloads (22) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return