Citation: | YANG Hongyan, SHAN Zixuan, LAI Liang, et al. A Review of Methods and Progress in Highly Efficient Screening of Antimicrobial Peptides from Natural Products[J]. Science and Technology of Food Industry, 2022, 43(21): 28−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030395. |
[1] |
KAHN L H. Antimicrobial resistance: A one health perspective[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene,2017,111(6):255−260. doi: 10.1093/trstmh/trx050
|
[2] |
TANGCHAROENSATHIEN V, SATTAYAWUTTHIPONG W, KANJANAPIMAI S, et al. Antimicrobial resistance: From global agenda to national strategic plan, Thailand[J]. Bulletin of the World Health Organization,2017,95(8):599−603. doi: 10.2471/BLT.16.179648
|
[3] |
CHELLAT M F, RAGUZ L, RIEDL R. Targeting antibiotic resistance[J]. Angewandte Chemie-International Edition,2016,55(23):6600−6626. doi: 10.1002/anie.201506818
|
[4] |
SMITH P A, KOEHLER M F T, GIRGIS H S, et al. Optimized arylomycins are a new class of gram-negative antibiotics[J]. Nature,2018,561(7722):189−194. doi: 10.1038/s41586-018-0483-6
|
[5] |
ATHANASIOU C I, KOPSINI A. Systematic review of the use of time series data in the study of antimicrobial consumption and Pseudomonas aeruginosa resistance[J]. Journal of Global Antimicrobial Resistance,2018,15:69−73. doi: 10.1016/j.jgar.2018.06.001
|
[6] |
SABATIER J-M. Antibacterial peptides[J]. Antibiotics-Basel,2020,9(4):142. doi: 10.3390/antibiotics9040142
|
[7] |
WANG G. Human antimicrobial peptides and proteins[J]. Pharmaceuticals (Basel, Switzerland),2014,7(5):545−594. doi: 10.3390/ph7050545
|
[8] |
BOPARAI J K, SHARMA P K. Mini review on antimicrobial peptides, sources, mechanism and recent applications[J]. Protein and Peptide Letters,2020,27(1):4−16. doi: 10.2174/18755305MTAwENDE80
|
[9] |
CORTES-PENFIELD N, OLIVER N T, HUNTER A, et al. Daptomycin and combination daptomycin-ceftaroline as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia[J]. Infectious Diseases,2018,50(8):643−647. doi: 10.1080/23744235.2018.1448110
|
[10] |
NG S M S, TEO S W, YONG Y E, et al. Preliminary investigations into developing all-D Omiganan for treating mupirocin-resistant MRSA skin infections[J]. Chemical Biology & Drug Design,2017,90(6):1155−1160.
|
[11] |
LAMB H M, WISEMAN L R. Pexiganan acetate[J]. Drugs,1998,56(6):1047−1052. doi: 10.2165/00003495-199856060-00011
|
[12] |
CIOCIOLA T, GIOVATI L, CONTI S, et al. Natural and synthetic peptides with antifungal activity[J]. Future Medicinal Chemistry,2016,8(12):1413−1433. doi: 10.4155/fmc-2016-0035
|
[13] |
DEMIRCI H, MURPHY F, MURPHY E, et al. A structural basis for streptomycin-induced misreading of the genetic code[J]. Nature Communications,2013,4:1355−1355. doi: 10.1038/ncomms2346
|
[14] |
HULTMARK D, STEINER H, RASMUSON T, et al. Insect immunity. Purification and prosperities of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J]. European Journal of Biochemistry,1980,106:7−16.
|
[15] |
PRASHANTH J R, HASABALLAH N, VETTER I. Pharmacological screening technologies for venom peptide discovery[J]. Neuropharmacology,2017,127:4−19. doi: 10.1016/j.neuropharm.2017.03.038
|
[16] |
NGUYEN L T, HANEY E F, VOGEL H J. The expanding scope of antimicrobial peptide structures and their modes of action[J]. Trends in Biotechnology,2011,29(9):464−472. doi: 10.1016/j.tibtech.2011.05.001
|
[17] |
CIUMAC D, GONG H, HU X, et al. Membrane targeting cationic antimicrobial peptides[J]. Journal of Colloid and Interface Science,2019,537:163−185. doi: 10.1016/j.jcis.2018.10.103
|
[18] |
XHINDOLI D, PACOR S, BENINCASA M, et al. The human cathelicidin LL-37A pore-forming antibacterial peptide and host-cell modulator[J]. Biochimica Et Biophysica Acta-Biomembranes,2016,1858(3):546−566. doi: 10.1016/j.bbamem.2015.11.003
|
[19] |
BERGEN G, STROET M, CARON B, et al. Curved or linear? Predicting the 3-dimensional structure of α-helical antimicrobial peptides in an amphipathic environment[J]. FEBS Letters,2020:594.
|
[20] |
YANG L, HARROUN T A, WEISS T M, et al. Barrel-stave model or toroidal model? A case study on melittin pores[J]. Biophysical Journal,2001,81(3):1475−1485. doi: 10.1016/S0006-3495(01)75802-X
|
[21] |
MIHAJLOVIC M, LAZARIDIS T. Antimicrobial peptides in toroidal and cylindrical pores[J]. Biophysical Journal,2010,98(3):281A−281A.
|
[22] |
SENGUPTA D, LEONTIADOU H, MARK A E, et al. Toroidal pores formed by antimicrobial peptides show significant disorder[J]. Biochimica Et Biophysica Acta-Biomembranes,2008,1778(10):2308−2317. doi: 10.1016/j.bbamem.2008.06.007
|
[23] |
REDDY K V R, YEDERY R D, ARANHA C. Antimicrobial peptides: Premises and promises[J]. International Journal of Antimicrobial Agents,2004,24(6):536−547. doi: 10.1016/j.ijantimicag.2004.09.005
|
[24] |
TEIXEIRA V, FEIO M J, BASTOS M. Role of lipids in the interaction of antimicrobial peptides with membranes[J]. Progress in Lipid Research,2012,51(2):149−177. doi: 10.1016/j.plipres.2011.12.005
|
[25] |
DAVID P, JAVIER A T, GUILLEM P E, et al. Insights into the antimicrobial mechanism of action of human RNase6: Structural determinants for bacterial cell agglutination and membrane permeation[J]. International Journal of Molecular Sciences,2016,17(4):552. doi: 10.3390/ijms17040552
|
[26] |
SINHA S, ZHENG L, MU Y, et al. Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination[J]. Scientific Reports,2017,7:17795. doi: 10.1038/s41598-017-18102-6
|
[27] |
BROGDEN K A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?[J]. Nature Reviews Microbiology,2005,3(3):238−250. doi: 10.1038/nrmicro1098
|
[28] |
KRAGOL G, LOVAS S, VARADI G, et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding[J]. Biochemistry,2001,40(10):3016−3026. doi: 10.1021/bi002656a
|
[29] |
UYTERHOEVEN E T, BUTLER C H, KO D, et al. Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II[J]. Febs Letters,2008,582(12):1715−1718. doi: 10.1016/j.febslet.2008.04.036
|
[30] |
WU G, FAN X, LI L, et al. Interaction of antimicrobial peptide S-thanatin with lipopolysaccharide in vitro and in an experimental mouse model of septic shock caused by a multidrug-resistant clinical isolate of Escherichia coli[J]. International Journal of Antimicrobial Agents,2010,35(3):250−254. doi: 10.1016/j.ijantimicag.2009.11.009
|
[31] |
CHEN X, LI L. Non-membrane mechanisms of antimicrobial peptide P7 against Escherichia coli[J]. Acta Microbiologica Sinica,2016,56(11):1737−1745.
|
[32] |
TUCKER A T, LEONARD S P, DUBOIS C D, et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries[J]. Cell,2018,172(3):618. doi: 10.1016/j.cell.2017.12.009
|
[33] |
PEI J J, JIANG H, LI X S, et al. Antimicrobial peptides sourced from post-butter processing waste yak milk protein hydrolysates[J]. Amb Express,2017,7:217. doi: 10.1186/s13568-017-0497-8
|
[34] |
PEI J, FENG Z, REN T, et al. Purification, characterization and application of a novel antimicrobial peptide from Andrias davidianus blood[J]. Letters in Applied Microbiology,2018,66(1):38−43. doi: 10.1111/lam.12823
|
[35] |
XIAO J, ZHANG H, NIU L, et al. Efficient screening of a novel antimicrobial peptide from Jatropha curcas by cell membrane affinity chromatography[J]. Journal of Agricultural and Food Chemistry,2011,59(4):1145−1151. doi: 10.1021/jf103876b
|
[36] |
TANG W, ZHANG H, WANG L, et al. New cationic antimicrobial peptide screened from boiled-dried anchovies by immobilized bacterial membrane liposome chromatography[J]. Journal of Agricultural and Food Chemistry,2014,62(7):1564−1571. doi: 10.1021/jf4052286
|
[37] |
TANG W T, ZHANG H, WANG L, et al. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction[J]. European Food Research and Technology,2013,237(4):591−600. doi: 10.1007/s00217-013-2034-6
|
[38] |
TŮMOVÁ T, MONINCOVÁ L, NEŠUTA O, et al. Determination of effective charges and ionic mobilities of polycationic antimicrobial peptides by capillary isotachophoresis and capillary zone electrophoresis[J]. Electrophoresis,2017,38(16):2018−2024. doi: 10.1002/elps.201700092
|
[39] |
ŠOLÍNOVÁ V, SÁZELOVÁ P, MÁŠOVÁ A. Application of capillary and free-flow zone electrophoresis for analysis and purification of antimicrobial β-alanyl-tyrosine from hemolymph of fleshfly Neobellieria bullata[J]. Molecules,2021,26(18):5636. doi: 10.3390/molecules26185636
|
[40] |
KOLUSHEVA S, BOYER L, JELINEK R. A colorimetric assay for rapid screening of antimicrobial peptides[J]. Nature Biotechnology,2000,18(2):225−227. doi: 10.1038/72697
|
[41] |
PAN W D, LIU X H, GE F, et al. Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis Grube and its partial characterization[J]. Journal of Biochemistry,2004,135(3):297−304. doi: 10.1093/jb/mvh036
|
[42] |
JASKIEWICZ M, ORLOWSKA M, OLIZAROWICZ G, et al. Rapid screening of antimicrobial synthetic peptides[J]. International Journal of Peptide Research and Therapeutics,2016,22(2):155−161. doi: 10.1007/s10989-015-9494-4
|
[43] |
KODEDOVA M, SYCHROVA H. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides' activity on various yeast species[J]. Journal of Biotechnology,2016,233:26−33. doi: 10.1016/j.jbiotec.2016.06.023
|
[44] |
THIRUMALAI M K, ROY A, SANIKOMMU S, et al. A simple, robust enzymatic-based high throughput screening method for antimicrobial peptides discovery against Escherichia coli[J]. Journal of Peptide Science,2014,20(5):341−348. doi: 10.1002/psc.2619
|
[45] |
YI Y, YOU X, BIAN C, et al. High-throughput identification of antimicrobial peptides from amphibious mudskippers[J]. Marine Drugs,2017,15(11):364. doi: 10.3390/md15110364
|
[46] |
MENOUSEK J, MISHRA B, HANKE M L, et al. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300[J]. International Journal of Antimicrobial Agents,2012,39(5):402−406. doi: 10.1016/j.ijantimicag.2012.02.003
|
[47] |
LIU Y, EICHLER J, PISCHETSRIEDER M. Virtual screening of a milk peptide database for the identification of food-derived antimicrobial peptides[J]. Molecular Nutrition & Food Research,2015,59(11):2243−2254.
|
[48] |
YI Y, LÜ Y, YOU X, et al. High throughput screening of small immune peptides and antimicrobial peptides from the fish-T1K database[J]. Genomics,2019,111(3):215−221. doi: 10.1016/j.ygeno.2018.11.023
|
[49] |
RAMYA M S, SIVASUBRAMANIAN K, RAVICHANDRAN S, et al. Screening of antimicrobial compound from the sea slug Armina babai[J]. Bangladesh Journal of Pharmacology,2014,9(3):268−274.
|
[50] |
LEE W, LEE D G. Fungicidal mechanisms of the antimicrobial peptide Bac8c[J]. Biochimica Et Biophysica Acta-Biomembranes,2015,1848(2):673−679. doi: 10.1016/j.bbamem.2014.11.024
|
[51] |
ZIETEK B M, KBM S, JASCHUSCH K, et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning[J]. Nature Biotechnology,2022,40:838−839. doi: 10.1038/s41587-022-01230-4
|
[52] |
MARIJA, MLADIC, BARBARA M, et al. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms[J]. Toxicon: Official Journal of the International Society on Toxinology,2016,110:79−89. doi: 10.1016/j.toxicon.2015.12.008
|
[53] |
OTVOS R A, VAN NIEROP P, NIESSEN W M A, et al. Development of an online cell-based bioactivity screening method by coupling liquid chromatography to flow cytometry with parallel mass spectrometry[J]. Analytical Chemistry,2016,88(9):4825−4832. doi: 10.1021/acs.analchem.6b00455
|
[54] |
XIE C, ALBULESCU L, BITTENBINDER M A, et al. Neutralizing effects of small molecule inhibitors and metal chelators on coagulopathic Viperinae snake venom toxins[J]. Cold Spring Harbor Laboratory,2020(9):129643.
|
[55] |
ZIETEK B M, KBM S, JASCHUSCH K, et al. Bioactivity profiling of small-volume samples by nano liquid chromatography coupled to microarray bioassaying using high-resolution fractionation[J]. Analytical Chemistry,2019,91(16):10458−10466. doi: 10.1021/acs.analchem.9b01261
|
[56] |
MLADIC M, SLAGBOOM J, KOOL J, et al. Detection and identification of antibacterial proteins in snake venoms using at-line nanofractionation coupled to LC-MS[J]. Toxicon,2018:155.
|
1. |
韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 .
![]() | |
2. |
邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
![]() | |
3. |
刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 .
![]() | |
4. |
马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
![]() | |
5. |
赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
![]() | |
6. |
周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
![]() | |
7. |
渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 .
![]() | |
8. |
靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .
![]() |