YANG Hongyan, SHAN Zixuan, LAI Liang, et al. A Review of Methods and Progress in Highly Efficient Screening of Antimicrobial Peptides from Natural Products[J]. Science and Technology of Food Industry, 2022, 43(21): 28−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030395.
Citation: YANG Hongyan, SHAN Zixuan, LAI Liang, et al. A Review of Methods and Progress in Highly Efficient Screening of Antimicrobial Peptides from Natural Products[J]. Science and Technology of Food Industry, 2022, 43(21): 28−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030395.

A Review of Methods and Progress in Highly Efficient Screening of Antimicrobial Peptides from Natural Products

More Information
  • Received Date: March 31, 2022
  • Available Online: August 25, 2022
  • Natural antimicrobial peptides (AMPs) are promising candidates for developing a generation of new antimicrobials to meet the challenge of antibiotic-resistant pathogens, and they are extensively applied in medicine, food, agriculture and other fields. However, the rapid screening of AMPs from natural products still has many difficulties and challenges, such as low efficiency and high consumption. This paper firstly introduces the action mechanism of AMPs (including membrane action mechanism and non-membrane action mechanism); then, the highly efficient screening methods of AMP are systematically reviewed, including bacterial adsorption, cell membrane chromatography, phospholipid membrane chromatography, capillary electrophoresis, colorimetry, thin layer chromatography, fluorescence screening, high-throughput sequencing, and mining databases screening. In addition, the development direction of efficient exploration of AMP is also prospected. This paper provides a scientific basis for the discovery of AMPs from complex natural product systems.
  • [1]
    KAHN L H. Antimicrobial resistance: A one health perspective[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene,2017,111(6):255−260. doi: 10.1093/trstmh/trx050
    [2]
    TANGCHAROENSATHIEN V, SATTAYAWUTTHIPONG W, KANJANAPIMAI S, et al. Antimicrobial resistance: From global agenda to national strategic plan, Thailand[J]. Bulletin of the World Health Organization,2017,95(8):599−603. doi: 10.2471/BLT.16.179648
    [3]
    CHELLAT M F, RAGUZ L, RIEDL R. Targeting antibiotic resistance[J]. Angewandte Chemie-International Edition,2016,55(23):6600−6626. doi: 10.1002/anie.201506818
    [4]
    SMITH P A, KOEHLER M F T, GIRGIS H S, et al. Optimized arylomycins are a new class of gram-negative antibiotics[J]. Nature,2018,561(7722):189−194. doi: 10.1038/s41586-018-0483-6
    [5]
    ATHANASIOU C I, KOPSINI A. Systematic review of the use of time series data in the study of antimicrobial consumption and Pseudomonas aeruginosa resistance[J]. Journal of Global Antimicrobial Resistance,2018,15:69−73. doi: 10.1016/j.jgar.2018.06.001
    [6]
    SABATIER J-M. Antibacterial peptides[J]. Antibiotics-Basel,2020,9(4):142. doi: 10.3390/antibiotics9040142
    [7]
    WANG G. Human antimicrobial peptides and proteins[J]. Pharmaceuticals (Basel, Switzerland),2014,7(5):545−594. doi: 10.3390/ph7050545
    [8]
    BOPARAI J K, SHARMA P K. Mini review on antimicrobial peptides, sources, mechanism and recent applications[J]. Protein and Peptide Letters,2020,27(1):4−16. doi: 10.2174/18755305MTAwENDE80
    [9]
    CORTES-PENFIELD N, OLIVER N T, HUNTER A, et al. Daptomycin and combination daptomycin-ceftaroline as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia[J]. Infectious Diseases,2018,50(8):643−647. doi: 10.1080/23744235.2018.1448110
    [10]
    NG S M S, TEO S W, YONG Y E, et al. Preliminary investigations into developing all-D Omiganan for treating mupirocin-resistant MRSA skin infections[J]. Chemical Biology & Drug Design,2017,90(6):1155−1160.
    [11]
    LAMB H M, WISEMAN L R. Pexiganan acetate[J]. Drugs,1998,56(6):1047−1052. doi: 10.2165/00003495-199856060-00011
    [12]
    CIOCIOLA T, GIOVATI L, CONTI S, et al. Natural and synthetic peptides with antifungal activity[J]. Future Medicinal Chemistry,2016,8(12):1413−1433. doi: 10.4155/fmc-2016-0035
    [13]
    DEMIRCI H, MURPHY F, MURPHY E, et al. A structural basis for streptomycin-induced misreading of the genetic code[J]. Nature Communications,2013,4:1355−1355. doi: 10.1038/ncomms2346
    [14]
    HULTMARK D, STEINER H, RASMUSON T, et al. Insect immunity. Purification and prosperities of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J]. European Journal of Biochemistry,1980,106:7−16.
    [15]
    PRASHANTH J R, HASABALLAH N, VETTER I. Pharmacological screening technologies for venom peptide discovery[J]. Neuropharmacology,2017,127:4−19. doi: 10.1016/j.neuropharm.2017.03.038
    [16]
    NGUYEN L T, HANEY E F, VOGEL H J. The expanding scope of antimicrobial peptide structures and their modes of action[J]. Trends in Biotechnology,2011,29(9):464−472. doi: 10.1016/j.tibtech.2011.05.001
    [17]
    CIUMAC D, GONG H, HU X, et al. Membrane targeting cationic antimicrobial peptides[J]. Journal of Colloid and Interface Science,2019,537:163−185. doi: 10.1016/j.jcis.2018.10.103
    [18]
    XHINDOLI D, PACOR S, BENINCASA M, et al. The human cathelicidin LL-37A pore-forming antibacterial peptide and host-cell modulator[J]. Biochimica Et Biophysica Acta-Biomembranes,2016,1858(3):546−566. doi: 10.1016/j.bbamem.2015.11.003
    [19]
    BERGEN G, STROET M, CARON B, et al. Curved or linear? Predicting the 3-dimensional structure of α-helical antimicrobial peptides in an amphipathic environment[J]. FEBS Letters,2020:594.
    [20]
    YANG L, HARROUN T A, WEISS T M, et al. Barrel-stave model or toroidal model? A case study on melittin pores[J]. Biophysical Journal,2001,81(3):1475−1485. doi: 10.1016/S0006-3495(01)75802-X
    [21]
    MIHAJLOVIC M, LAZARIDIS T. Antimicrobial peptides in toroidal and cylindrical pores[J]. Biophysical Journal,2010,98(3):281A−281A.
    [22]
    SENGUPTA D, LEONTIADOU H, MARK A E, et al. Toroidal pores formed by antimicrobial peptides show significant disorder[J]. Biochimica Et Biophysica Acta-Biomembranes,2008,1778(10):2308−2317. doi: 10.1016/j.bbamem.2008.06.007
    [23]
    REDDY K V R, YEDERY R D, ARANHA C. Antimicrobial peptides: Premises and promises[J]. International Journal of Antimicrobial Agents,2004,24(6):536−547. doi: 10.1016/j.ijantimicag.2004.09.005
    [24]
    TEIXEIRA V, FEIO M J, BASTOS M. Role of lipids in the interaction of antimicrobial peptides with membranes[J]. Progress in Lipid Research,2012,51(2):149−177. doi: 10.1016/j.plipres.2011.12.005
    [25]
    DAVID P, JAVIER A T, GUILLEM P E, et al. Insights into the antimicrobial mechanism of action of human RNase6: Structural determinants for bacterial cell agglutination and membrane permeation[J]. International Journal of Molecular Sciences,2016,17(4):552. doi: 10.3390/ijms17040552
    [26]
    SINHA S, ZHENG L, MU Y, et al. Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination[J]. Scientific Reports,2017,7:17795. doi: 10.1038/s41598-017-18102-6
    [27]
    BROGDEN K A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?[J]. Nature Reviews Microbiology,2005,3(3):238−250. doi: 10.1038/nrmicro1098
    [28]
    KRAGOL G, LOVAS S, VARADI G, et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding[J]. Biochemistry,2001,40(10):3016−3026. doi: 10.1021/bi002656a
    [29]
    UYTERHOEVEN E T, BUTLER C H, KO D, et al. Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II[J]. Febs Letters,2008,582(12):1715−1718. doi: 10.1016/j.febslet.2008.04.036
    [30]
    WU G, FAN X, LI L, et al. Interaction of antimicrobial peptide S-thanatin with lipopolysaccharide in vitro and in an experimental mouse model of septic shock caused by a multidrug-resistant clinical isolate of Escherichia coli[J]. International Journal of Antimicrobial Agents,2010,35(3):250−254. doi: 10.1016/j.ijantimicag.2009.11.009
    [31]
    CHEN X, LI L. Non-membrane mechanisms of antimicrobial peptide P7 against Escherichia coli[J]. Acta Microbiologica Sinica,2016,56(11):1737−1745.
    [32]
    TUCKER A T, LEONARD S P, DUBOIS C D, et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries[J]. Cell,2018,172(3):618. doi: 10.1016/j.cell.2017.12.009
    [33]
    PEI J J, JIANG H, LI X S, et al. Antimicrobial peptides sourced from post-butter processing waste yak milk protein hydrolysates[J]. Amb Express,2017,7:217. doi: 10.1186/s13568-017-0497-8
    [34]
    PEI J, FENG Z, REN T, et al. Purification, characterization and application of a novel antimicrobial peptide from Andrias davidianus blood[J]. Letters in Applied Microbiology,2018,66(1):38−43. doi: 10.1111/lam.12823
    [35]
    XIAO J, ZHANG H, NIU L, et al. Efficient screening of a novel antimicrobial peptide from Jatropha curcas by cell membrane affinity chromatography[J]. Journal of Agricultural and Food Chemistry,2011,59(4):1145−1151. doi: 10.1021/jf103876b
    [36]
    TANG W, ZHANG H, WANG L, et al. New cationic antimicrobial peptide screened from boiled-dried anchovies by immobilized bacterial membrane liposome chromatography[J]. Journal of Agricultural and Food Chemistry,2014,62(7):1564−1571. doi: 10.1021/jf4052286
    [37]
    TANG W T, ZHANG H, WANG L, et al. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction[J]. European Food Research and Technology,2013,237(4):591−600. doi: 10.1007/s00217-013-2034-6
    [38]
    TŮMOVÁ T, MONINCOVÁ L, NEŠUTA O, et al. Determination of effective charges and ionic mobilities of polycationic antimicrobial peptides by capillary isotachophoresis and capillary zone electrophoresis[J]. Electrophoresis,2017,38(16):2018−2024. doi: 10.1002/elps.201700092
    [39]
    ŠOLÍNOVÁ V, SÁZELOVÁ P, MÁŠOVÁ A. Application of capillary and free-flow zone electrophoresis for analysis and purification of antimicrobial β-alanyl-tyrosine from hemolymph of fleshfly Neobellieria bullata[J]. Molecules,2021,26(18):5636. doi: 10.3390/molecules26185636
    [40]
    KOLUSHEVA S, BOYER L, JELINEK R. A colorimetric assay for rapid screening of antimicrobial peptides[J]. Nature Biotechnology,2000,18(2):225−227. doi: 10.1038/72697
    [41]
    PAN W D, LIU X H, GE F, et al. Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis Grube and its partial characterization[J]. Journal of Biochemistry,2004,135(3):297−304. doi: 10.1093/jb/mvh036
    [42]
    JASKIEWICZ M, ORLOWSKA M, OLIZAROWICZ G, et al. Rapid screening of antimicrobial synthetic peptides[J]. International Journal of Peptide Research and Therapeutics,2016,22(2):155−161. doi: 10.1007/s10989-015-9494-4
    [43]
    KODEDOVA M, SYCHROVA H. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides' activity on various yeast species[J]. Journal of Biotechnology,2016,233:26−33. doi: 10.1016/j.jbiotec.2016.06.023
    [44]
    THIRUMALAI M K, ROY A, SANIKOMMU S, et al. A simple, robust enzymatic-based high throughput screening method for antimicrobial peptides discovery against Escherichia coli[J]. Journal of Peptide Science,2014,20(5):341−348. doi: 10.1002/psc.2619
    [45]
    YI Y, YOU X, BIAN C, et al. High-throughput identification of antimicrobial peptides from amphibious mudskippers[J]. Marine Drugs,2017,15(11):364. doi: 10.3390/md15110364
    [46]
    MENOUSEK J, MISHRA B, HANKE M L, et al. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300[J]. International Journal of Antimicrobial Agents,2012,39(5):402−406. doi: 10.1016/j.ijantimicag.2012.02.003
    [47]
    LIU Y, EICHLER J, PISCHETSRIEDER M. Virtual screening of a milk peptide database for the identification of food-derived antimicrobial peptides[J]. Molecular Nutrition & Food Research,2015,59(11):2243−2254.
    [48]
    YI Y, LÜ Y, YOU X, et al. High throughput screening of small immune peptides and antimicrobial peptides from the fish-T1K database[J]. Genomics,2019,111(3):215−221. doi: 10.1016/j.ygeno.2018.11.023
    [49]
    RAMYA M S, SIVASUBRAMANIAN K, RAVICHANDRAN S, et al. Screening of antimicrobial compound from the sea slug Armina babai[J]. Bangladesh Journal of Pharmacology,2014,9(3):268−274.
    [50]
    LEE W, LEE D G. Fungicidal mechanisms of the antimicrobial peptide Bac8c[J]. Biochimica Et Biophysica Acta-Biomembranes,2015,1848(2):673−679. doi: 10.1016/j.bbamem.2014.11.024
    [51]
    ZIETEK B M, KBM S, JASCHUSCH K, et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning[J]. Nature Biotechnology,2022,40:838−839. doi: 10.1038/s41587-022-01230-4
    [52]
    MARIJA, MLADIC, BARBARA M, et al. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms[J]. Toxicon: Official Journal of the International Society on Toxinology,2016,110:79−89. doi: 10.1016/j.toxicon.2015.12.008
    [53]
    OTVOS R A, VAN NIEROP P, NIESSEN W M A, et al. Development of an online cell-based bioactivity screening method by coupling liquid chromatography to flow cytometry with parallel mass spectrometry[J]. Analytical Chemistry,2016,88(9):4825−4832. doi: 10.1021/acs.analchem.6b00455
    [54]
    XIE C, ALBULESCU L, BITTENBINDER M A, et al. Neutralizing effects of small molecule inhibitors and metal chelators on coagulopathic Viperinae snake venom toxins[J]. Cold Spring Harbor Laboratory,2020(9):129643.
    [55]
    ZIETEK B M, KBM S, JASCHUSCH K, et al. Bioactivity profiling of small-volume samples by nano liquid chromatography coupled to microarray bioassaying using high-resolution fractionation[J]. Analytical Chemistry,2019,91(16):10458−10466. doi: 10.1021/acs.analchem.9b01261
    [56]
    MLADIC M, SLAGBOOM J, KOOL J, et al. Detection and identification of antibacterial proteins in snake venoms using at-line nanofractionation coupled to LC-MS[J]. Toxicon,2018:155.
  • Cited by

    Periodical cited type(8)

    1. 韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 . 本站查看
    2. 邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
    3. 刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 . 本站查看
    4. 马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
    5. 赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
    6. 周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
    7. 渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 . 本站查看
    8. 靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (279) PDF downloads (38) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return