Citation: | WU Yuling, MA Yuchen, DENG Huxue, et al. Quantitative Analysis of Food and Gut Microbiota Based on CiteSpace[J]. Science and Technology of Food Industry, 2022, 43(23): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030235. |
[1] |
CHEN C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology,2006,57(3):359−377. doi: 10.1002/asi.20317
|
[2] |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242−253. [CHEN Y, CHEN C M, LIU Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science,2015,33(2):242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
|
[3] |
CHEN C, YUE C, HOROWITZ M, et al. Towards an explanatory and computational theory of scientific discovery[J]. Journal of Informetrics,2009,3(3):191−209. doi: 10.1016/j.joi.2009.03.004
|
[4] |
SHAH T, SHAH Z, BALOCH Z, et al. The role of microbiota in respiratory health and diseases, particularly in tuberculosis[J]. Biomedicine & Pharmacotherapy,2021,143:112108.
|
[5] |
ZHU C, WANG X, LI J, et al. Determine independent gut microbiota-diseases association by eliminating the effects of human lifestyle factors[J]. BMC Microbiology,2022,22(1):1−15. doi: 10.1186/s12866-021-02409-6
|
[6] |
MISHRA S P, JAIN S, TARAPHDER S, et al. New horizons in microbiota and metabolic health research[J]. Journal of Clinical Endocrinology & Metabolism,2021,106(2):E1052−E1059.
|
[7] |
YOON K, KIM N. Roles of sex hormones and gender in the gut microbiota[J]. Journal of Neurogastroenterology and Motility,2021,27(3):314−325. doi: 10.5056/jnm20208
|
[8] |
WANG H X, WANG Y P. Gut microbiota-brain axis[J]. Chinese Medical Journal,2016,129(19):2373−2380. doi: 10.4103/0366-6999.190667
|
[9] |
HALL A B, TOLONEN A C, XAVIER R J. Human genetic variation and the gut microbiome in disease[J]. Nature Reviews Genetics,2017,18(11):690−699. doi: 10.1038/nrg.2017.63
|
[10] |
SENDER R, FUCHS S, MILO R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biology,2016,14(8):e1002533. doi: 10.1371/journal.pbio.1002533
|
[11] |
CAMERON E A, SPERANDIO V. Frenemies: Signaling and nutritional integration in pathogen-microbiota-host interactions[J]. Cell Host & Microbe,2015,18(3):275−284.
|
[12] |
LIU H G, ZhUANG J L, TANG P, et al. The role of the gut microbiota in coronary heart disease[J]. Current Atherosclerosis Reports,2020,22(12):77. doi: 10.1007/s11883-020-00892-2
|
[13] |
COLLINS M, DEWITT M. Fecal microbiota transplantation in the treatment of Crohn disease[J]. Jaapa-Journal of the American Academy of Physician Assistants,2020,33(9):34−37. doi: 10.1097/01.JAA.0000694964.31958.b9
|
[14] |
DING J H, JIN Z, YANG X X, et al. Role of gut microbiota via the gut-liver-brain axis in digestive diseases[J]. World Journal of Gastroenterology,2020,26(40):6141−6162. doi: 10.3748/wjg.v26.i40.6141
|
[15] |
SCHEPIS T, DE LUCIA S S, NISTA E C, et al. Microbiota in pancreatic diseases: A review of the literature[J]. Journal of Clinical Medicine,2021,10(24):5920. doi: 10.3390/jcm10245920
|
[16] |
XU H H, LIU M J, CAO J F, et al. The dynamic interplay between the gut microbiota and autoimmune diseases[J]. Journal of Immunology Research,2019:7546047.
|
[17] |
ZHOU A, LEI Y Y, TANG L, et al. Gut microbiota: The emerging link to lung homeostasis and disease[J]. Journal of Bacteriology,2021,203(4):e00454.
|
[18] |
LIU B N, LIU X T, LIANG Z H, et al. Gut microbiota in obesity[J]. World Journal of Gastroenterology,2021,27(25):3837−3850. doi: 10.3748/wjg.v27.i25.3837
|
[19] |
WU Y, WAN J, CHOE U, et al. Interactions between food and gut microbiota: Impact on human health[J]. Annual Review of Food Science and Technology,2019,10:389−408. doi: 10.1146/annurev-food-032818-121303
|
[20] |
CONLON M A, BIRD A R. The impact of diet and lifestyle on gut microbiota and human health[J]. Nutrients,2014,7(1):17−44. doi: 10.3390/nu7010017
|
[21] |
MOLINO S, LERMA-AGUILERA A, JIMENEZ-HERNANDEZ N, et al. Enrichment of food with tannin extracts promotes healthy changes in the human gut microbiota[J]. Frontiers in Microbiology,2021,12:625782. doi: 10.3389/fmicb.2021.625782
|
[22] |
HAN Y, XIAO H. Whole food-based approaches to modulating gut microbiota and associated diseases[J]. Annual Review of Food Science and Technology,2020,11:119−143. doi: 10.1146/annurev-food-111519-014337
|
[23] |
FLORES G E, CAPORASO J G, HENLEY J B, et al. Temporal variability is a personalized feature of the human microbiome[J]. Genome Biology,2014,15(12):1−13.
|
[24] |
ROTHSCHILD D, WEISSBROD O, BARKAN E, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature,2018,555(7695):210−215. doi: 10.1038/nature25973
|
[25] |
TOMOVA A, SOLTYS K, KEMENYOVA P, et al. The influence of food intake specificity in children with autism on gut microbiota[J]. International Journal of Molecular Sciences,2020,21(8):2797. doi: 10.3390/ijms21082797
|
[26] |
CHEN C M. Science mapping: A systematic review of the literature[J]. Journal of Data and Information Science,2017,2(2):1−40. doi: 10.1515/jdis-2017-0006
|
[27] |
顾理平, 范海潮. 网络隐私问题十年研究的学术场域——基于CiteSpace可视化科学知识图谱分析(2008-2017)[J]. 新闻与传播研究,2018,25(12):57−73, 127. [GU L P, FAN H C. The academic field of online privacy research in a decade: An analysis of scientific knowledge map based on CiteSpace visualization (2008-2017)[J]. Journalism & Communication,2018,25(12):57−73, 127.
|
[28] |
CHEN C, HU Z, LIU S, et al. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace[J]. Expert Opinion on Biological Therapy,2012,12(5):593−608. doi: 10.1517/14712598.2012.674507
|
[29] |
李琴, 石学彬. 基于WOS文献计量的食品科技研究现状分析[J]. 科学观察,2012,12(5):593−608. [LI Q, SHI X B. Bibliometric analysis of food science and technology research status based on WOS[J]. Science Focus,2012,12(5):593−608. doi: 10.15978/j.cnki.1673-5668.202103004
|
[30] |
李雯, 姜仁贵, 解建仓, 等. 基于文献计量学的城市洪涝灾害研究可视化知识图谱分析[J]. 西安理工大学学报,2020,36(4):523−529. [LI W, JIANG R G, XIE J C, et al. Analysis of visual knowledge mapping of urban flood disaster research using bibliometrics[J]. Journal of Xi'an University of Technology,2020,36(4):523−529. doi: 10.19322/j.cnki.issn.1006-4710.2020.04.012
|
[31] |
DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature,2014,505(7484):559−563. doi: 10.1038/nature12820
|
[32] |
KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332−1345. doi: 10.1016/j.cell.2016.05.041
|
[33] |
GIBSON G R, HUTKINS R, SANDERS M E, et al. The International Scientific Association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nature Reviews Gastroenterology & Hepatology,2017,14(8):491−502.
|
[34] |
CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. Dada 2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods,2016,13(7):581−583. doi: 10.1038/nmeth.3869
|
[35] |
YATSUNENKO T, REY F E, MANARY M J, et al. Human gut microbiome viewed across age and geography[J]. Nature,2012,486(7402):222−227. doi: 10.1038/nature11053
|
[36] |
WU G D, CHEN J, HOFFMANN C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science,2011,334(6052):105−108.
|
[37] |
DESAI M S, SEEKATZ A M, KOROPATKIN N M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell,2016,167(5):1339−1353. doi: 10.1016/j.cell.2016.10.043
|
[38] |
CHASSAING B, KOREN O, GOODRICH J K, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome[J]. Nature,2015,519(7541):92−96. doi: 10.1038/nature14232
|
[39] |
QIN J, LI R, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature,2010,464(7285):59−65. doi: 10.1038/nature08821
|
[40] |
SONNENBURG E D, SMITS S A, TIKHONOV M, et al. Diet-induced extinctions in the gut microbiota compound over generations[J]. Nature,2016,529(7585):212−215. doi: 10.1038/nature16504
|
[41] |
DE FILIPPO C, CAVALIERI D, DI PAOLA M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proceedings of the National Academy of Sciences,2010,107(33):14691−14696. doi: 10.1073/pnas.1005963107
|
[42] |
RÍOS-COVIÁN D, RUAS-MADIEDO P, MARGOLLES A, et al. Intestinal short chain fatty acids and their link with diet and human health[J]. Frontiers in Microbiology,2016,7:185.
|
[43] |
HILL C, GUARNER F, REID G, et al. Expert consensus document: The International Scientific Association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nature Reviews Gastroenterology & Hepatology,2014,11(8):506−514.
|
[44] |
MORRISON D J, PRESTON T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes,2016,7(3):189−200. doi: 10.1080/19490976.2015.1134082
|
[45] |
TREMAROLI V, BÄCKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature,2012,489(7415):242−249. doi: 10.1038/nature11552
|
[46] |
SINGH R K, CHANG H W, YAN D I, et al. Influence of diet on the gut microbiome and implications for human health[J]. Journal of Translational Medicine,2017,15(1):1−17. doi: 10.1186/s12967-016-1111-6
|
[47] |
ARUMUGAM M, RAES J, PELLETIER E, et al. Enterotypes of the human gut microbiome[J]. Nature,2011,473(7346):174−180. doi: 10.1038/nature09944
|
[48] |
MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host & Microbe,2018,23(6):705−715.
|
[49] |
BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology,2019,37(8):852−857. doi: 10.1038/s41587-019-0209-9
|
[50] |
DE FILIPPIS F, PELLEGRINI N, VANNINI L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome[J]. Gut,2016,65(11):1812−1821. doi: 10.1136/gutjnl-2015-309957
|
[1] | LI Ruomin, ZHANG Huanxin, PAN Saikun, YE Jingjing. Process Optimization and Functional Properties of Peony Seeds Protein[J]. Science and Technology of Food Industry, 2023, 44(8): 197-204. DOI: 10.13386/j.issn1002-0306.2022050251 |
[2] | PANG Huina, DONG Hongying, XIAO Fengqin, ZHANG Hongyin, HAN Rongxin, WANG Haidong, YAN Mingming, SHAO Shuai. Optimization of Enzymatic Hydrolysis Process of Pueraria Protein by Response Surface Methodology and Its Antioxidant Properties in Vitro[J]. Science and Technology of Food Industry, 2022, 43(24): 197-204. DOI: 10.13386/j.issn1002-0306.2021100147 |
[3] | SUN Jin-yi, LU Yan-xuan, HUI Yong-hai, ZHANG Shi-qi. Optimization of Foaming Extraction of a Moringa oleifera Leaf Protein by Response Surface Methodology[J]. Science and Technology of Food Industry, 2020, 41(12): 150-154. DOI: 10.13386/j.issn1002-0306.2020.12.024 |
[4] | ZHANG Jun-jie, GUO Chen, LIU Yi-fei, FANG Cai, WANG Zhi-Wei, WANG Yi-qiu, ZONG Wei. Optimization of Extraction Technology of Kabuli Chickpea Protein by Response Surface Methodology[J]. Science and Technology of Food Industry, 2018, 39(17): 167-172. DOI: 10.13386/j.issn1002-0306.2018.17.028 |
[5] | YAN Zhen, GUO Xu, ZHANG Jin-bao, WANG Qing, CHENG An-wei, HE Sheng-wen, SUN Jin-yue. Optimization of process for preparation of antioxidant peptides by enzymatic hydrolysis of protein prepared from peony seed meal[J]. Science and Technology of Food Industry, 2018, 39(7): 168-174,180. DOI: 10.13386/j.issn1002-0306.2018.07.031 |
[6] | HUANG Hao, QIN Gao-yi-xin, CHEN Gui-Tang, QI Guo-hong, CHENG Shu-jie, YANG Zhi-ping. Optimization of protein extraction from Astragali radix waste by response surface methodology[J]. Science and Technology of Food Industry, 2017, (23): 170-176. DOI: 10.13386/j.issn1002-0306.2017.23.032 |
[7] | ZHANG Jing-jing, LI Xiao, YAO Guang-long, CAO Xian-ying, CHEN Jian. Optimization of cashew nuts protein extraction using response surface methodology[J]. Science and Technology of Food Industry, 2016, (22): 305-308. DOI: 10.13386/j.issn1002-0306.2016.22.051 |
[8] | YAN Hui, CAI Hao, JIA Jun-qiang, JIANG Ming-zhu, WU Qiong-ying. Optimization of ultrasonic-assisted enzymatic preparation of peony seed hypoglycemic polypeptide by response surface methodology[J]. Science and Technology of Food Industry, 2016, (17): 220-224. DOI: 10.13386/j.issn1002-0306.2016.17.035 |
[9] | WANG Zhen-bin, WANG Xi, LIN Xiao-ming, MA Hai-le, WANG Lin, MA Xiao-ke, WANG Gan, BAI Zhi-jie. Preparation conditions optimization of sesame cake protein using response surface methodology[J]. Science and Technology of Food Industry, 2014, (05): 167-171. DOI: 10.13386/j.issn1002-0306.2014.05.039 |
[10] | Optimization of the extraction technology of protein from sloanea hemsleyana seed by response surface methodology[J]. Science and Technology of Food Industry, 2012, (16): 246-250. DOI: 10.13386/j.issn1002-0306.2012.16.084 |