Citation: | MA Wenjie, ZHONG Yi, LU Zhaoxin, et al. Effect and Regulation of Pyruvate on Bacillomycin D Synthesis[J]. Science and Technology of Food Industry, 2022, 43(22): 189−197. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030231. |
[1] |
RAUBITSCHEK F, DOSTROVSKY A. An antibiotic active against dermatophytes derived from Bacillus subtilis[J]. Dermatologica,1950,100(1):45−49. doi: 10.1159/000257151
|
[2] |
PEYPOUX F, BESSON F, MICHEL G, et al. Characterization of a new antibiotic of iturin group: Bacillomycin D[J]. The Journal of Antibiotics,1980,33(10):1146−1149. doi: 10.7164/antibiotics.33.1146
|
[3] |
PEYPOUX F, POMMIER M T, DAS B C, et al. Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis[J]. The Journal of Antibiotics,1984,37(12):1600−1604. doi: 10.7164/antibiotics.37.1600
|
[4] |
LIN F, ZHU X, SUN J, et al. Bacillomycin D-C16 inhibits growth of Fusarium verticillioides and production of fumonisin B-1 in maize kernels[J]. Pesticide Biochemistry and Physiology,2022,181:105015.1−105015.8.
|
[5] |
QIAN S, LU H, SUN J, et al. Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples[J]. Food Control,2016,60:281−288. doi: 10.1016/j.foodcont.2015.08.006
|
[6] |
SOUSSI S, ESSID R, KARKOUCH I, et al. Effect of lipopeptide-loaded chitosan nanoparticles on Candida albicans adhesion and on the growth of Leishmania major[J]. Applied Biochemistry and Biotechnology,2021,193(11):3732−3752. doi: 10.1007/s12010-021-03621-w
|
[7] |
WANG M, MA Y, MOU H, et al. Bacillomycin D lipopeptides from marine Bacillus megaterium as antimicrobial and preservative agents for large yellow croaker, Larimichthys crocea[J]. Journal of Food Safety,2019,39(4):e12652.1−e12652.12.
|
[8] |
HAJARE S N, SUBRAMANIAN M, GAUTAM S, et al. Induction of apoptosis in human cancer cells by a Bacillus lipopeptide bacillomycin D[J]. Biochimie,2013,95(9):1722−1731. doi: 10.1016/j.biochi.2013.05.015
|
[9] |
LIN F, YANG J, MUHAMMAD U, et al. Bacillomycin D-C16 triggers apoptosis of gastric cancer cells through the PI3K/Akt and FoxO3a signaling pathways[J]. Anti-Cancer Drugs,2019,30(1):46−55. doi: 10.1097/CAD.0000000000000688
|
[10] |
ZHOU M, LIU F, YANG X, et al. Bacillibactin and bacillomycin analogues with cytotoxicities against human cancer cell lines from marine Bacillus sp PKU-MA00093 and PKU-MA00092[J]. Marine Drugs,2018,16(1):22.1−22.14.
|
[11] |
权春善, 刘静, 周伟, 等. 解淀粉芽孢杆菌Q-426 Bacillomycin D的分离纯化及其抗肿瘤活性[J]. 生物工程学报,2018,34(2):235−245. [QUAN C S, LIU J, ZHOU W, et al. Isolation, purification and antitumor activity of bacillomycin D from Bacillus amyloliquefaciens Q-426[J]. Chinese Journal of Biotechnology,2018,34(2):235−245.
|
[12] |
YUAN J, LI B, ZHANG N, et al. Production of bacillomycin- and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens[J]. Journal of Agricultural and Food Chemistry,2012,60(12):2976−2981. doi: 10.1021/jf204868z
|
[13] |
HANSEN D B, BUMPUS S B, ARON Z D, et al. The loading module of mycosubtilin: An adenylation domain with fatty acid selectivity[J]. Journal of the American Chemical Society,2007,129(20):6366−6367. doi: 10.1021/ja070890j
|
[14] |
NAM J, ALAM S T, KANG K, et al. Anti-staphylococcal activity of a cyclic lipopeptide, C-15-bacillomycin D, produced by Bacillus velezensis NST6[J]. Journal of Applied Microbiology,2021,131(1):93−104. doi: 10.1111/jam.14936
|
[15] |
QIAN S, LU H, MENG P, et al. Effect of inulin on efficient production and regulatory biosynthesis of bacillomycin D in Bacillus subtilis fmbJ[J]. Bioresource Technology,2015,179:260−267. doi: 10.1016/j.biortech.2014.11.086
|
[16] |
QIAN S, SUN J, LU H, et al. L-glutamine efficiently stimulates biosynthesis of bacillomycin D in Bacillus subtilis fmbJ[J]. Process Biochemistry,2017,58:224−229. doi: 10.1016/j.procbio.2017.04.026
|
[17] |
钱时权. Bacillomycin D的高效合成调控及赫曲霉污染控制研究[D]. 南京: 南京农业大学, 2015
QIAN S H. Study on regulation of efficient biosynthesis and control of Aspergillus ochraceus growth by bacillomycin D[D]. Nanjing: Nanjing Agricultural University, 2015.
|
[18] |
何婷婷. Bacillus subtilis G70产抗菌脂肽Bacillomycin D发酵条件优化及其分离纯化[D]. 南京: 南京农业大学, 2019. HE T T. Optimization of fermentation conditions and isolation and purification of bacillomycin D in Bacillus subtilis G70[D]. Nanjing: Nanjing Agricultural University, 2015.
|
[19] |
李伟, 孙静, 林福兴, 等. 枯草芽孢杆菌M364高产抗菌肽Bacillomycin D工业培养基优化[J]. 食品工业科技,2018,39(22):192−199. [LI W, SUN J, LIN F X, et al. Optimization of bacillomycin D high-yield industrial fermentation medium of Bacillus subtilis M364[J]. Science and Technology of Food Industry,2018,39(22):192−199.
|
[20] |
JI C H, KIM H, JE H W, et al. Top-down synthetic biology approach for titer improvement of clinically important antibiotic daptomycin in Streptomyces roseosporus[J]. Metabolic Engineering,2022,69:40−49. doi: 10.1016/j.ymben.2021.10.013
|
[21] |
HU F, CAI W, LIN J, et al. Genetic engineering of the precursor supply pathway for the overproduction of the nC(14)-surfactin isoform with promising MEOR applications[J]. Microbial Cell Factories,2021,20(1):96.1−96.14.
|
[22] |
WU Q, ZHI Y, XU Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168[J]. Metabolic Engineering,2019,52:87−97. doi: 10.1016/j.ymben.2018.11.004
|
[23] |
TENOUX I, BESSON F, MICHEL G. Studies on bacillomycin-D biosynthesis by Bacillus-subtilis[J]. Microbios,1993,74(298):29−37.
|
[24] |
武雅楠. 丙酮酸对木葡糖酸醋杆菌细菌纤维素合成的影响[D]. 天津: 天津科技大学, 2018
WU Y N. Effect of pyruvic acid on bacterial cellulose synthesis of Gluconacetobacter xylinus CGMCC 2955[D]. Tanjin: Tianjin University of Science and Technology, 2018.
|
[25] |
孙静. Bacillomycin D的生物合成分子调控机制与在小麦贮藏中的应用研究[D]. 南京: 南京农业大学, 2019
SUN J. Molecular regulatory of biosynthesis mechanism and application in wheat storage of bacillomycin D[D]. Nanjing: Nanjing Agricultural University, 2019.
|
[26] |
MOYNE A L, CLEVELAND T E, TUZUN S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D[J]. Fems Microbiology Letters,2004,234(1):43−49. doi: 10.1111/j.1574-6968.2004.tb09511.x
|
[27] |
QIAN S, LI X, SUN L, et al. Exploration of production of C-14 and C-15 bacillomycin D homologues with enzymatic hydrolysis from maize straws using fed-batch fermentation by Bacillus subtilis NS-174[J]. Rsc Advances,2020,10(11):6725−6734. doi: 10.1039/C9RA10536K
|
[28] |
张宪花. 螺旋霉素发酵过程转录组分析及发酵优化[D]. 上海: 华东理工大学, 2021
ZHANG X H. Transcriptome analysis and fermentation optimization of Spiramycin fermentation[D]. Shanghai: East China University of Science and Technology, 2021.
|
[29] |
李志刚, 陈宝峰, 张中华, 等. 辅助能量物质强化环磷酸腺苷发酵合成机制[J]. 中国生物工程杂志,2020,40(Z1):102−108. [LI Z G, CHEN B F, ZHANG Z H, et al. The physiological mechanism for enhanced cyclic adenosine monophosphate biosynthesis by auxiliary energy substances[J]. Chinese Journal of Bioengineering,2020,40(Z1):102−108. doi: 10.13523/j.cb.1905019
|
[30] |
LILGE L, VAHIDINASAB M, ADIEK I, et al. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains[J]. Microbiologyopen,2021,10(5):e1241.1−e1241.10.
|
[31] |
CHEN X H, KOUMOUTSI A, SCHOLZ R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens[J]. Journal of Biotechnology,2009,140(1-2):27−37. doi: 10.1016/j.jbiotec.2008.10.011
|
[32] |
SUN J, LIU Y, LIN F, et al. CodY, ComA, DegU and Spo0A controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ[J]. Journal of Applied Microbiology,2021,131(3):1289−1304. doi: 10.1111/jam.15007
|
[33] |
SUN J, QIAN S, LU J, et al. Knockout of rapC improves the bacillomycin D yield based on de novo genome sequencing of Bacillus amyloliquefaciens fmbJ[J]. Journal of Agricultural and Food Chemistry,2018,66(17):4422−4430. doi: 10.1021/acs.jafc.8b00418
|
[34] |
LI Y, ZHANG H, LI Y, et al. Fusaricidin biosynthesis is controlled via a kinB-spo0A-abrB signal pathway in Paenibacillus polymyxa WLY78[J]. Molecular Plant-Microbe Interactions,2021,34(12):1378−1389. doi: 10.1094/MPMI-05-21-0117-R
|
[35] |
KARATAS A Y, CETIN S, OZCENGIZ G. The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis[J]. Biochimica Et Biophysica Acta-Gene Structure and Expression,2003,1626(1−3):51−56. doi: 10.1016/S0167-4781(03)00037-X
|
[36] |
VENTURA JR S, HU H, JAHNG D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes[J]. Applied Microbiology and Biotechnology,2013,97(16):7505−7516. doi: 10.1007/s00253-013-5075-7
|
[37] |
YAMAMOTO S, GUNJI W, SUZUKI H, et al. Overexpression of genes encoding glycolytic enzymes in corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions[J]. Applied and Environmental Microbiology,2012,78(12):4447−4457. doi: 10.1128/AEM.07998-11
|
[38] |
ZHAO F, BAI P, NAN W, et al. A modular engineering strategy for high-level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae[J]. Aiche Journal,2019,65(3):866−874. doi: 10.1002/aic.16502
|
[39] |
HIDESE R, MATSUDA M, OSANAI T, et al. Malic enzyme facilitates D-lactate production through increased pyruvate supply during anoxic dark fermentation in Synechocystis sp. PCC 6803[J]. Acs Synthetic Biology,2020,9(2):260−268. doi: 10.1021/acssynbio.9b00281
|
[40] |
HIROKAWA Y, KUBO T, SOMA Y, et al. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942[J]. Metabolic Engineering,2020,57:23−30. doi: 10.1016/j.ymben.2019.07.012
|
[41] |
DU L, ZHANG Z, XU Q, et al. New strategy for removing acetic acid as a by product during L-tryptophan production[J]. Biotechnology & Biotechnological Equipment,2019,33(1):1471−1480.
|
1. |
张瑞娟,苏艳群,夏菲,刘金刚,肖贵华,孙德文,杨小博,黄举. 不同种类研磨淀粉用于纸质食品包装的防油性能研究. 中国造纸. 2025(01): 62-68+84 .
![]() | |
2. |
李晶晶,张甜甜,佟岳,刘培玲. 高静压协同酸水解促淀粉颗粒纳米晶体化. 中国食品学报. 2024(12): 57-68 .
![]() | |
3. |
张芮娟. 固体制剂制药工艺及质量控制研究. 粘接. 2023(04): 149-152 .
![]() | |
4. |
高琦,张首央,唐子程,彭雪,王宁,薛友林. 蛋白质纳米颗粒的制备及其在食品领域的应用研究进展. 食品工业科技. 2023(11): 30-37 .
![]() | |
5. |
段智颖,王申宛,艾斌凌,郑丽丽,郑晓燕,杨旸,校导,杨劲松,盛占武. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质. 食品科学. 2023(12): 74-83 .
![]() |