MA Wenjie, ZHONG Yi, LU Zhaoxin, et al. Effect and Regulation of Pyruvate on Bacillomycin D Synthesis[J]. Science and Technology of Food Industry, 2022, 43(22): 189−197. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030231.
Citation: MA Wenjie, ZHONG Yi, LU Zhaoxin, et al. Effect and Regulation of Pyruvate on Bacillomycin D Synthesis[J]. Science and Technology of Food Industry, 2022, 43(22): 189−197. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030231.

Effect and Regulation of Pyruvate on Bacillomycin D Synthesis

More Information
  • Received Date: March 17, 2022
  • Available Online: September 05, 2022
  • Objective: This paper mainly studied the effects and regulation of exogenous addition of pyruvate, overexpression of pyruvate kinase and acetyl-CoA synthase on the synthesis of Bacillomycin D. Methods: In this study, B. amyloliquefaciens fmbJ was used as the initial strain. Firstly, the effect of exogenous pyruvate with different concentrations on the yield of Bacillomycin D was detected by HPLC. The regulation of pyruvate in this process was detected by RT-PCR. Then, pyruvate kinase (pyk) and acetyl-CoA synthase (acs) overexpression strains B. amyloliquefaciens fmbJ-pyk and fmbJ-acs were constructed by electrotransformation, and their Bacillomycin D production induced by different concentrations of IPTG was studied. Results: 0.075% pyruvate could increase the yield on Bacillomycin D to 1.41-fold that of the control group. The upregulation of Bacillomycin D synthesis gene also verified this enhancement. In addition, pyruvate could up-regulate the expression of regulatory factors such as comA, comP, comQ, sigH, sigM, degU, degQ, spo0A and codY, down-regulate the expression of rapC and abrB, promote the production of acetyl CoA synthase, and finally jointly promote the synthesis of Bacillomycin D. Under the induction of 50 mg/L IPTG, the yield of Bacillomycin D of fmbJ-acs and fmbJ-pyk increased to 1.16-fold and 1.34-fold that of fmbJ, respectively. Conclusion: This study found that exogenous addition of pyruvate and overexpression of acs or pyk could promote the synthesis of Bacillomycin D, clarified the regulation of pyruvate in the synthesis of Bacillomycin D, and widened a new research idea for promoting the efficient production of Bacillomycin D.
  • [1]
    RAUBITSCHEK F, DOSTROVSKY A. An antibiotic active against dermatophytes derived from Bacillus subtilis[J]. Dermatologica,1950,100(1):45−49. doi: 10.1159/000257151
    [2]
    PEYPOUX F, BESSON F, MICHEL G, et al. Characterization of a new antibiotic of iturin group: Bacillomycin D[J]. The Journal of Antibiotics,1980,33(10):1146−1149. doi: 10.7164/antibiotics.33.1146
    [3]
    PEYPOUX F, POMMIER M T, DAS B C, et al. Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis[J]. The Journal of Antibiotics,1984,37(12):1600−1604. doi: 10.7164/antibiotics.37.1600
    [4]
    LIN F, ZHU X, SUN J, et al. Bacillomycin D-C16 inhibits growth of Fusarium verticillioides and production of fumonisin B-1 in maize kernels[J]. Pesticide Biochemistry and Physiology,2022,181:105015.1−105015.8.
    [5]
    QIAN S, LU H, SUN J, et al. Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples[J]. Food Control,2016,60:281−288. doi: 10.1016/j.foodcont.2015.08.006
    [6]
    SOUSSI S, ESSID R, KARKOUCH I, et al. Effect of lipopeptide-loaded chitosan nanoparticles on Candida albicans adhesion and on the growth of Leishmania major[J]. Applied Biochemistry and Biotechnology,2021,193(11):3732−3752. doi: 10.1007/s12010-021-03621-w
    [7]
    WANG M, MA Y, MOU H, et al. Bacillomycin D lipopeptides from marine Bacillus megaterium as antimicrobial and preservative agents for large yellow croaker, Larimichthys crocea[J]. Journal of Food Safety,2019,39(4):e12652.1−e12652.12.
    [8]
    HAJARE S N, SUBRAMANIAN M, GAUTAM S, et al. Induction of apoptosis in human cancer cells by a Bacillus lipopeptide bacillomycin D[J]. Biochimie,2013,95(9):1722−1731. doi: 10.1016/j.biochi.2013.05.015
    [9]
    LIN F, YANG J, MUHAMMAD U, et al. Bacillomycin D-C16 triggers apoptosis of gastric cancer cells through the PI3K/Akt and FoxO3a signaling pathways[J]. Anti-Cancer Drugs,2019,30(1):46−55. doi: 10.1097/CAD.0000000000000688
    [10]
    ZHOU M, LIU F, YANG X, et al. Bacillibactin and bacillomycin analogues with cytotoxicities against human cancer cell lines from marine Bacillus sp PKU-MA00093 and PKU-MA00092[J]. Marine Drugs,2018,16(1):22.1−22.14.
    [11]
    权春善, 刘静, 周伟, 等. 解淀粉芽孢杆菌Q-426 Bacillomycin D的分离纯化及其抗肿瘤活性[J]. 生物工程学报,2018,34(2):235−245. [QUAN C S, LIU J, ZHOU W, et al. Isolation, purification and antitumor activity of bacillomycin D from Bacillus amyloliquefaciens Q-426[J]. Chinese Journal of Biotechnology,2018,34(2):235−245.
    [12]
    YUAN J, LI B, ZHANG N, et al. Production of bacillomycin- and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens[J]. Journal of Agricultural and Food Chemistry,2012,60(12):2976−2981. doi: 10.1021/jf204868z
    [13]
    HANSEN D B, BUMPUS S B, ARON Z D, et al. The loading module of mycosubtilin: An adenylation domain with fatty acid selectivity[J]. Journal of the American Chemical Society,2007,129(20):6366−6367. doi: 10.1021/ja070890j
    [14]
    NAM J, ALAM S T, KANG K, et al. Anti-staphylococcal activity of a cyclic lipopeptide, C-15-bacillomycin D, produced by Bacillus velezensis NST6[J]. Journal of Applied Microbiology,2021,131(1):93−104. doi: 10.1111/jam.14936
    [15]
    QIAN S, LU H, MENG P, et al. Effect of inulin on efficient production and regulatory biosynthesis of bacillomycin D in Bacillus subtilis fmbJ[J]. Bioresource Technology,2015,179:260−267. doi: 10.1016/j.biortech.2014.11.086
    [16]
    QIAN S, SUN J, LU H, et al. L-glutamine efficiently stimulates biosynthesis of bacillomycin D in Bacillus subtilis fmbJ[J]. Process Biochemistry,2017,58:224−229. doi: 10.1016/j.procbio.2017.04.026
    [17]
    钱时权. Bacillomycin D的高效合成调控及赫曲霉污染控制研究[D]. 南京: 南京农业大学, 2015

    QIAN S H. Study on regulation of efficient biosynthesis and control of Aspergillus ochraceus growth by bacillomycin D[D]. Nanjing: Nanjing Agricultural University, 2015.
    [18]
    何婷婷. Bacillus subtilis G70产抗菌脂肽Bacillomycin D发酵条件优化及其分离纯化[D]. 南京: 南京农业大学, 2019. HE T T. Optimization of fermentation conditions and isolation and purification of bacillomycin D in Bacillus subtilis G70[D]. Nanjing: Nanjing Agricultural University, 2015.
    [19]
    李伟, 孙静, 林福兴, 等. 枯草芽孢杆菌M364高产抗菌肽Bacillomycin D工业培养基优化[J]. 食品工业科技,2018,39(22):192−199. [LI W, SUN J, LIN F X, et al. Optimization of bacillomycin D high-yield industrial fermentation medium of Bacillus subtilis M364[J]. Science and Technology of Food Industry,2018,39(22):192−199.
    [20]
    JI C H, KIM H, JE H W, et al. Top-down synthetic biology approach for titer improvement of clinically important antibiotic daptomycin in Streptomyces roseosporus[J]. Metabolic Engineering,2022,69:40−49. doi: 10.1016/j.ymben.2021.10.013
    [21]
    HU F, CAI W, LIN J, et al. Genetic engineering of the precursor supply pathway for the overproduction of the nC(14)-surfactin isoform with promising MEOR applications[J]. Microbial Cell Factories,2021,20(1):96.1−96.14.
    [22]
    WU Q, ZHI Y, XU Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168[J]. Metabolic Engineering,2019,52:87−97. doi: 10.1016/j.ymben.2018.11.004
    [23]
    TENOUX I, BESSON F, MICHEL G. Studies on bacillomycin-D biosynthesis by Bacillus-subtilis[J]. Microbios,1993,74(298):29−37.
    [24]
    武雅楠. 丙酮酸对木葡糖酸醋杆菌细菌纤维素合成的影响[D]. 天津: 天津科技大学, 2018

    WU Y N. Effect of pyruvic acid on bacterial cellulose synthesis of Gluconacetobacter xylinus CGMCC 2955[D]. Tanjin: Tianjin University of Science and Technology, 2018.
    [25]
    孙静. Bacillomycin D的生物合成分子调控机制与在小麦贮藏中的应用研究[D]. 南京: 南京农业大学, 2019

    SUN J. Molecular regulatory of biosynthesis mechanism and application in wheat storage of bacillomycin D[D]. Nanjing: Nanjing Agricultural University, 2019.
    [26]
    MOYNE A L, CLEVELAND T E, TUZUN S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D[J]. Fems Microbiology Letters,2004,234(1):43−49. doi: 10.1111/j.1574-6968.2004.tb09511.x
    [27]
    QIAN S, LI X, SUN L, et al. Exploration of production of C-14 and C-15 bacillomycin D homologues with enzymatic hydrolysis from maize straws using fed-batch fermentation by Bacillus subtilis NS-174[J]. Rsc Advances,2020,10(11):6725−6734. doi: 10.1039/C9RA10536K
    [28]
    张宪花. 螺旋霉素发酵过程转录组分析及发酵优化[D]. 上海: 华东理工大学, 2021

    ZHANG X H. Transcriptome analysis and fermentation optimization of Spiramycin fermentation[D]. Shanghai: East China University of Science and Technology, 2021.
    [29]
    李志刚, 陈宝峰, 张中华, 等. 辅助能量物质强化环磷酸腺苷发酵合成机制[J]. 中国生物工程杂志,2020,40(Z1):102−108. [LI Z G, CHEN B F, ZHANG Z H, et al. The physiological mechanism for enhanced cyclic adenosine monophosphate biosynthesis by auxiliary energy substances[J]. Chinese Journal of Bioengineering,2020,40(Z1):102−108. doi: 10.13523/j.cb.1905019
    [30]
    LILGE L, VAHIDINASAB M, ADIEK I, et al. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains[J]. Microbiologyopen,2021,10(5):e1241.1−e1241.10.
    [31]
    CHEN X H, KOUMOUTSI A, SCHOLZ R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens[J]. Journal of Biotechnology,2009,140(1-2):27−37. doi: 10.1016/j.jbiotec.2008.10.011
    [32]
    SUN J, LIU Y, LIN F, et al. CodY, ComA, DegU and Spo0A controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ[J]. Journal of Applied Microbiology,2021,131(3):1289−1304. doi: 10.1111/jam.15007
    [33]
    SUN J, QIAN S, LU J, et al. Knockout of rapC improves the bacillomycin D yield based on de novo genome sequencing of Bacillus amyloliquefaciens fmbJ[J]. Journal of Agricultural and Food Chemistry,2018,66(17):4422−4430. doi: 10.1021/acs.jafc.8b00418
    [34]
    LI Y, ZHANG H, LI Y, et al. Fusaricidin biosynthesis is controlled via a kinB-spo0A-abrB signal pathway in Paenibacillus polymyxa WLY78[J]. Molecular Plant-Microbe Interactions,2021,34(12):1378−1389. doi: 10.1094/MPMI-05-21-0117-R
    [35]
    KARATAS A Y, CETIN S, OZCENGIZ G. The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis[J]. Biochimica Et Biophysica Acta-Gene Structure and Expression,2003,1626(1−3):51−56. doi: 10.1016/S0167-4781(03)00037-X
    [36]
    VENTURA JR S, HU H, JAHNG D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes[J]. Applied Microbiology and Biotechnology,2013,97(16):7505−7516. doi: 10.1007/s00253-013-5075-7
    [37]
    YAMAMOTO S, GUNJI W, SUZUKI H, et al. Overexpression of genes encoding glycolytic enzymes in corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions[J]. Applied and Environmental Microbiology,2012,78(12):4447−4457. doi: 10.1128/AEM.07998-11
    [38]
    ZHAO F, BAI P, NAN W, et al. A modular engineering strategy for high-level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae[J]. Aiche Journal,2019,65(3):866−874. doi: 10.1002/aic.16502
    [39]
    HIDESE R, MATSUDA M, OSANAI T, et al. Malic enzyme facilitates D-lactate production through increased pyruvate supply during anoxic dark fermentation in Synechocystis sp. PCC 6803[J]. Acs Synthetic Biology,2020,9(2):260−268. doi: 10.1021/acssynbio.9b00281
    [40]
    HIROKAWA Y, KUBO T, SOMA Y, et al. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942[J]. Metabolic Engineering,2020,57:23−30. doi: 10.1016/j.ymben.2019.07.012
    [41]
    DU L, ZHANG Z, XU Q, et al. New strategy for removing acetic acid as a by product during L-tryptophan production[J]. Biotechnology & Biotechnological Equipment,2019,33(1):1471−1480.
  • Cited by

    Periodical cited type(5)

    1. 张瑞娟,苏艳群,夏菲,刘金刚,肖贵华,孙德文,杨小博,黄举. 不同种类研磨淀粉用于纸质食品包装的防油性能研究. 中国造纸. 2025(01): 62-68+84 .
    2. 李晶晶,张甜甜,佟岳,刘培玲. 高静压协同酸水解促淀粉颗粒纳米晶体化. 中国食品学报. 2024(12): 57-68 .
    3. 张芮娟. 固体制剂制药工艺及质量控制研究. 粘接. 2023(04): 149-152 .
    4. 高琦,张首央,唐子程,彭雪,王宁,薛友林. 蛋白质纳米颗粒的制备及其在食品领域的应用研究进展. 食品工业科技. 2023(11): 30-37 . 本站查看
    5. 段智颖,王申宛,艾斌凌,郑丽丽,郑晓燕,杨旸,校导,杨劲松,盛占武. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质. 食品科学. 2023(12): 74-83 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (268) PDF downloads (10) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return