Citation: | GAO Jingzhu, ZHU Wenxiu, XIA Xiaodong. Protective Effects of Pasteurized Akkermansia muciniphila on Ox-LDL-Induced Cell Injury in Human Aortic Endothelial Cells and Underlying Mechanisms[J]. Science and Technology of Food Industry, 2022, 43(22): 272−279. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030220. |
[1] |
KANG H, YU H, FAN J H, et al. Rotigotine protects against oxidized low-density lipoprotein (ox-LDL)-induced damages in human umbilical vein endothelial cells (HUVECs)[J]. Bioengineered,2021,12(2):10568−10579. doi: 10.1080/21655979.2021.2000224
|
[2] |
中国心血管健康与疾病报告2020编写组. 中国心血管健康与疾病报告2020要点解读[J]. 中国心血管杂志,2021,26(3):209−218. [Committee of the Report on Cardiovascular Health and Diseases in China. Interpretation of Report on Cardiovascular Health and Diseases in China 2020[J]. Chinese Journal of Cardiovascular Medicine,2021,26(3):209−218.
|
[3] |
TAKANO H, ZOU YUNZENG, HASEGAWA H, et al. Oxidative stress-induced signal transduction pathways in cardiac myocytes: Involvement of ROS in heart diseases[J]. Antioxidants & Redox Signaling,2003,5(6):789−794.
|
[4] |
杨中书, 杨侃, 曹宇, 等. 人oxLDL自身免疫复合物的体外致动脉粥样硬化作用[J]. 中南大学学报 ( 医学版 ) ,2005,30(2):202−206. [YANG Zhongshu, YANG Kan, CAO Yu, et al. Proatherogenic effect of immune complexes of human oxLDL in vitro[J]. Journal of Central South University (Medical Sciences),2005,30(2):202−206.
|
[5] |
SINGH R B, MENG S A, XU Y J, et al. Pathogenesis of atherosclerosis: A multifactorial process[J]. Experimental and Clinical Cardiology,2002,7(1):40−53.
|
[6] |
PARTHASARATHY S, RAGHAVAMENON A, GARELNABI M O, et al. Oxidized low-density lipoprotein[J]. Methods in Molecular Biology,2010,610(1):403−417.
|
[7] |
STEINBERG D. The LDL modification hypothesis of atherogenesis: An update[J]. Jounary of Lipid Research,2009,50(1):S376−S381.
|
[8] |
MICHAEL A, GIMBRONE J, CARDEÑA G G. Endothelial cell dysfunction and the pathobiology of atherosclerosis[J]. Circulation Research,2016,118(4):620−636. doi: 10.1161/CIRCRESAHA.115.306301
|
[9] |
TANG R N, LI Q, LÜ L L, et al. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells[J]. Cardio Vascular Diabetology,2010,9(31):1−7.
|
[10] |
CHEN B, LU Y R, CHEN Y N. The role of Nrf2 in oxidative stress-induced endothelial injuries[J]. Journal of Endocrinology,2015,225(3):83−99. doi: 10.1530/JOE-14-0662
|
[11] |
潘南, 吴靖娜, 苏永昌, 等. 福建养殖仿刺参抗氧化多肽的酶解工艺优化及其对过氧化氢诱导的血管内皮细胞EA. hy926损伤的保护作用[J]. 食品工业科技,2018,39(24):183−191. [PAN Nan, WU Jingna, SU Yongchang, et al. Optimization of enzymatic hydrolysis of aquacultured sea cucumber Apostichopus japonicus in fujian and protective effects of enzymatic hydrolysate against hydrogen peroxide in human vascular endothelial cells EA. hy926[J]. Science and Technology of Food Industry,2018,39(24):183−191.
|
[12] |
DAVE M, HIGGINS P D, MIDDHA S, et al. The human gut microbiome: Current knowledge, challenges, and future directions[J]. Translational Research,2012,160(4):246−257. doi: 10.1016/j.trsl.2012.05.003
|
[13] |
DERRIEN M, COLLADO M C, AMOR K B, et al. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract[J]. Applied and Environmental Microbiology,2008,74(5):1646−1648. doi: 10.1128/AEM.01226-07
|
[14] |
ZHANG T, JI X H, LU G C, et al. The potential of Akkermansia muciniphila in inflammatory bowel disease[J]. Applied and Environmental Microbiology,2021,105(14−15):5785−5794.
|
[15] |
WANG L J, TANG L, FENG Y M, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice[J]. Gut,2020,69(11):1988−1997. doi: 10.1136/gutjnl-2019-320105
|
[16] |
CANI P D. Gut microbiota-at the intersection of everything?[J]. Nature Reviews Gastroenterology and Hepatollgy,2017,14(6):321−322. doi: 10.1038/nrgastro.2017.54
|
[17] |
BARCENA C, MAS V R, MAYORAL P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice[J]. Nature Medicine,2019,25(8):1234−1242. doi: 10.1038/s41591-019-0504-5
|
[18] |
DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nature Medicine,2019,25(7):1096−1103. doi: 10.1038/s41591-019-0495-2
|
[19] |
PLOVIERl H, EVERARD A, DRUART C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nature Medicine,2017,23(1):107−113. doi: 10.1038/nm.4236
|
[20] |
LI J, LIN S Q, VANHOUTTE P M. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe-/-mice[J]. Circulation,2016,133(24):2434−2446. doi: 10.1161/CIRCULATIONAHA.115.019645
|
[21] |
OTTMAN N, REUNANEN J, MEIJERINK M, et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function[J]. PLoS One,2017,12(3):e0173004−e0173022. doi: 10.1371/journal.pone.0173004
|
[22] |
LIU R J, CHENG F, ZENG K H, et al. GPR120 agonist GW9508 ameliorated cellular senescence induced by ox-LDL[J]. American Chemical Society Omega,2020,5(50):32195−32202.
|
[23] |
李浩铭, 黄永杰, 王永丽, 等. 姜黄素及其代谢修饰产物对PC12细胞氧化损伤的保护作用[J]. 食品科学,2020,41(15):208−215. [LI Haoming, HUANG Yongjie, WANG Yongli, et al. Protective effects of curcumin and its metabolites on H2O2-induced oxidative damage in PC12 cells[J]. Food Sciences,2020,41(15):208−215. doi: 10.7506/spkx1002-6630-20191014-109
|
[24] |
DHALLA N S, TEMSAH R M, NETTICADAN T. Role of oxidative stress in cardiovascular diseases[J]. Journal of Hypertension,2000,18(6):655−673. doi: 10.1097/00004872-200018060-00002
|
[25] |
JIA D, LI T, CHEN X F, et al. Salvianic acid A sodium protects HUVEC cells against tert-butyl hydroperoxide induced oxidative injury via mitochondria-dependent pathway[J]. Chemico-Biological Interactions,2018,279:234−242. doi: 10.1016/j.cbi.2017.10.025
|
[26] |
ZHOU J L, MA W X, WANG X C, et al. Matrine suppresses reactive oxygen species (ROS)-Mediated MKKs/p38-induced inflammation in oxidized low-density lipoprotein (ox-LDL)-Stimulated macrophages[J]. Medical Science Monitor:International Medical Journal of Experimental and Clinical Research,2019,25:4130−4136.
|
[27] |
WANG Y, WU Y P, WANG Y B, et al. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production[J]. Applied Microbiology and Biotechnology,2017,101(7):3015−3026. doi: 10.1007/s00253-016-8032-4
|
[28] |
BAFANA A, DUTT S, KUMAR A, et al. The basic and applied aspects of superoxide dismutase[J]. Journal of Molecular Catalysis B:Enzymatic,2011,68(2):129−138. doi: 10.1016/j.molcatb.2010.11.007
|
[29] |
GUNDUZ K, OZTURK G, SOZMEN E Y. Erythrocyte superoxide dismutase, catalase activities and plasma nitrite and nitrate levels in patients with Behcet disease and recurrent aphthous stomatitis[J]. Clinical and Experimental Dermatology: Experimental dermatology,2004,29(2):176−179. doi: 10.1111/j.1365-2230.2004.01488.x
|
[30] |
吴志刚, 沈洪艳, 杨枭, 等. 二甲苯对锦鲤肝脏丙二醛含量和总抗氧化能力的影响[J]. 江苏农业科学,2013,41(2):257−260. [WU Zhigang, SHEN Hongyan, YANG Xiao, et al. Effects of xylene on the content of malondialdehyde and total anti-oxidation capacity of koi liver[J]. Jiangsu Agricultural Sciences,2013,41(2):257−260. doi: 10.3969/j.issn.1002-1302.2013.02.099
|
[31] |
WANG G, HAO M Y, LIU Q, et al. Protective effect of recombinant Lactobacillus plantarum against H2O2-induced oxidative stress in HUVEC cells[J]. Journal of Zhejiang University-Biomedicine & Biotechnology,2021,22(5):348−365.
|
[32] |
崔志文, 黄琴, 黄怡, 等. 鼠李糖乳酸杆菌对Caco-2细胞抗氧化功能的影响[J]. 中国农业科学,2011,44(23):4926−4932. [CUI Zhiwen, HUANG Qin, HUANG Yi, et al. Antioxidative function of Lacbacillus rhamnosus to Caco-2 cells[J]. Scientia Agricultura Sinica,2011,44(23):4926−4932. doi: 10.3864/j.issn.0578-1752.2011.23.020
|
[33] |
AN L, ZHOU M, FAIZ M M, et al. Salvia miltiorrhiza lipophilic fraction attenuates oxidative stress in diabetic nephropathy through activation of nuclear factor erythroid 2-related factor 2[J]. The American Journal of Chinese Medicine,2017,45(7):1441−1457. doi: 10.1142/S0192415X17500781
|
[34] |
CHEN J S, HUANG P H, WANG C H, et al. Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent mechanism, contributes to anti-atherogenesis and vascular protective effects of Ginkgo biloba extract[J]. Atherosclerosis,2011,214(2):301−309. doi: 10.1016/j.atherosclerosis.2010.11.010
|
[35] |
HAN D N, CHEN W, GU X L, et al. Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway[J]. Oncotarget,2017,8(9):14680−14692. doi: 10.18632/oncotarget.14747
|
[36] |
HSEU Y C, CHOU C W, KUMAR K J S, et al. Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes[J]. Food and Chemical Toxicology,2012,50(5):1245−1255. doi: 10.1016/j.fct.2012.02.020
|
[37] |
KOBATAKE E, NAKAGAWA H, SEKI T, et al. Protective effects and functional mechanisms of Lactobacillus gasseri SBT2055 against oxidative stress[J]. PloS One,2017,12(5):e0177106−e0177123. doi: 10.1371/journal.pone.0177106
|
[38] |
MU G Q, LI H Y, TUO Y F, et al. Antioxidative effect of Lactobacillus plantarum Y44 on 2,2'-azobis (2-methylpropionamidine) dihydrochloride (ABAP)-damaged Caco-2 cells[J]. Journal of Dairy Science,2019,102(8):6863−6875. doi: 10.3168/jds.2019-16447
|
1. |
安勤,鲍肃都,陈宏宇,安会敏,陈圆,张欣仪,刘洋,刘仲华,黄建安. 基于GC×GC-QTOF-MS分析不同品种汝城白毛茶白茶的香气特征. 食品科学. 2025(04): 163-171 .
![]() | |
2. |
刘学艳,杨文光,徐婷,罗正飞,王绍梅,龚正礼. 并堆工艺对云南白茶品质影响的研究. 中国茶叶. 2025(03): 25-33 .
![]() | |
3. |
熊梦钒,鲁倩,陈泽文,李利亭,任玲,董蕊,周红杰,李亚莉. HS-SPME-GC-MS技术结合ROAV分析五指山茶区三种红茶的关键香气物质. 现代食品科技. 2025(01): 251-261 .
![]() | |
4. |
马晨阳,高畅,田迪,周小慧,任玲,李沅达,李亚莉,周红杰. 不同季节云抗10号厌氧加工白茶的品质差异探究. 食品工业科技. 2024(03): 107-113 .
![]() | |
5. |
孔亚帅,卫艺炜,万亚欣,王晶晶,姚慧敏,尹鹏,王子浩,郭桂义. 基于非靶向代谢组学技术的不同季节信阳白茶品质分析. 食品科技. 2024(05): 50-56 .
![]() | |
6. |
黄艳,张有东,孙威江. 白茶加工技术与装备应用现状. 中国茶叶. 2024(08): 14-22 .
![]() | |
7. |
武珊珊,杨雪梅,舒娜,郭雯飞,潘朦,张绪尖,苏建美,马占霞. 基于HS-SPME-GC-MS的云南白茶关键香气组分及特征分析. 食品研究与开发. 2024(16): 170-180 .
![]() | |
8. |
谢晨昕,赵锋,林雨,蔡良绥,林智,郭丽. 日晒茶风味化学特征研究进展. 茶叶科学. 2024(04): 554-564 .
![]() | |
9. |
叶秋萍,余雯,谢基雄,曾新萍,应梦云. 不同干燥方式对茉莉花茶挥发性成分的影响. 食品工业科技. 2024(18): 210-218 .
![]() | |
10. |
李为兰,徐柠檬,杨晶晶,资璐熙,郭磊. 基于GC-IMS指纹图谱分析云南不同产地美味牛肝菌的挥发性成分. 中国食品学报. 2024(08): 341-356 .
![]() | |
11. |
刘金鑫,李晓洁,李建华,谈亚丽,杜维力,李啸. 高茶黄素速溶红茶的酶促氧化工艺优化及品质分析. 食品工业科技. 2023(05): 185-194 .
![]() | |
12. |
李沅达,吴婷,黄刚骅,任玲,马晨阳,周小慧,李亚莉,周红杰. SPME-GC-MS技术结合rOAV分析不同加工工艺紫娟白茶的关键香气物质. 食品工业科技. 2023(09): 324-332 .
![]() | |
13. |
武珊珊,尤名南,潘朦,王玮,郭巧,丁其欢,周雪芳. 白茶香气成分及影响因素研究进展. 食品安全质量检测学报. 2023(12): 1-14 .
![]() | |
14. |
翁唐宾. 白茶加工工艺关键技术分析. 福建茶叶. 2023(08): 29-31 .
![]() | |
15. |
张晓元,陈雄,蔡伟贤,吴晖. 草珊瑚茶加工工艺及质量评价. 现代食品科技. 2023(08): 199-205 .
![]() | |
16. |
周一鸣,蔡望秋,朱思怡,魏佳南,崔琳琳,周小理. 福建白茶的风味物质与特征香气分析研究进展. 农产品加工. 2023(19): 84-89+95 .
![]() | |
17. |
陈林,陈键,宋振硕,王丽丽,张应根,项丽慧,林清霞. 白茶风味品质形成与调控技术研究进展. 中国茶叶加工. 2023(04): 22-35 .
![]() | |
18. |
王金华,叶晓仪,母艳,马立志,钱勇,葛永辉. 贵州3种代表性猕猴桃种间特征香气成分比较分析. 食品安全质量检测学报. 2022(19): 6190-6197 .
![]() | |
19. |
张灵枝,戴浩民,黄艳,林振传,邵克平,孙威江. 福鼎白茶品质特征与质量评判研究进展. 海峡科学. 2022(11): 68-72+76 .
![]() |