XU Shulai, XU Yao, YOU Tingting, et al. Optimization of Ultra-high Pressure Assisted Extraction of the Triterpenoids from the Ganoderma lucidum and Evaluation of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(20): 274−280. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030181.
Citation: XU Shulai, XU Yao, YOU Tingting, et al. Optimization of Ultra-high Pressure Assisted Extraction of the Triterpenoids from the Ganoderma lucidum and Evaluation of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(20): 274−280. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030181.

Optimization of Ultra-high Pressure Assisted Extraction of the Triterpenoids from the Ganoderma lucidum and Evaluation of Its Antioxidant Activity

More Information
  • Received Date: March 14, 2022
  • Available Online: August 03, 2022
  • Taking Ganoderma lucidum in Northeast China as the experimental raw materials and the yield of Ganoderma triterpenes as the evaluation index, the extraction process by ultra-high pressure (UHP) and organic solvent extraction methods were optimized, and the antioxidant activity in vitro of Ganoderma triterpenes obtained by different extraction methods was studied. The optimum technology of assisted extraction by UHP was as follows: Pressure 350 MPa, solid-liquid ratio 1:20 g/mL, pressure holding time 7 min, ethanol concentration 90%, and the yield of triterpenoids was 1.154%. The optimum technology of organic solvent extraction was as follows: Solid-liquid ratio 1:25 g/mL, ethanol concentration 90%, extraction temperature 75 ℃, extraction time 3 h, and the yield of triterpenoids was 0.925%. The research results of antioxidant activity indicated: When the triterpenoids concentration extracted by UHP was 3 mg/mL, the free scavenging rates of DPPH and hydroxyl were respectively 59.64%±2.44%, 62.31%±1.57%, IC50 was respectively 1.8 and 2.0 mg/mL, while the DPPH and hydroxyl free scavenging rates of the triterpenes extracted by organic solvent were only 41.87%±2.72% and 43.36%±2.36% under the same concentration conditions, and there was a good correlation between Ganoderma lucidum triterpene concentration and antioxidant activity. This study would lay the theoretical foundation for the extraction and application of Ganoderma lucidum triterpenes.
  • [1]
    邢佳慧. 灵芝属的物种多样性、分类与系统发育研究[D]. 北京: 北京林业大学, 2019.

    XING J H. Species diversity, taxonomy and phylogeny of Glossy ganoderma[D]. Beijing: Beijing Forestry University, 2019.
    [2]
    徐瑶, 徐树来, 刘志彬, 等. 灵芝三萜类化合物提取纯化及生物活性研究进展[J]. 食品工业科技, 2022, 43(11): 458-464.

    XU Yao, XU Shulai, LIU Zhibin, et al. Research progress on the extraction, purification and biological activity of triterpenoids from the Ganoderma lucidum[J]. Science and Technology of Food Industry, 2022, 43(11): 458-464.
    [3]
    SHAO C S, ZHOU X H, ZHENG X X, et al. Ganoderic acid D in-duces synergistic autophagic cell death except for apoptosis in ES-CC cells[J]. J Ethnopharmacol,2020,262:113−213.
    [4]
    杨玉. 灵芝中三萜类成分及α-葡萄糖苷酶抑制活性研究[D]. 大连: 大连医科大学, 2015.

    YANG Y. Studies on triterpenoids and α-glucosidase inhibitory activity of Ganoderma lucidum[D]. Dalian: Dalian Medical University, 2015.
    [5]
    CHIU H F, FU H Y, LU Y Y, et al. Triterpenoids and polysaccha-ride peptides-enriched ganoderma lucidum: A randomized, doub-le-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers[J]. Pharm Biol,2017,55(1):1041−1046. doi: 10.1080/13880209.2017.1288750
    [6]
    RUAN W M, LIM A H H, HUANG L G, et al. Extraction optimisation and isolation of triterpenoids from Ganoderma lucidum and their effect on human carcinoma cell growth[J]. Natural Product Research,2014,28(24):2264−2272. doi: 10.1080/14786419.2014.938337
    [7]
    LI L, GUO H J, ZHU L Y, et al. A supercritical-CO2 extract of Ganoder-ma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition[J]. Phytomedicine,2016,23(5):491−497. doi: 10.1016/j.phymed.2016.02.019
    [8]
    ZHENG Shizhong, ZHANG Weirui, LIU Shengrong. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxidant capacities[J]. PloS One,2020,15(12):1−16.
    [9]
    篑霄云, 何晋浙, 王静, 等. 微波提取灵芝中三萜类化合物的研究[J]. 中国食品学报,2010(2):89−96. [KUI Xiaoyun, HE Jinzhe, WANG Jing, et al. The study on the microwave extraction of the triterpenoid saponins from Ganoderma lucidum[J]. Chinese Journal of Food,2010(2):89−96. doi: 10.3969/j.issn.1009-7848.2010.02.013
    [10]
    丁霄霄, 李凤伟, 余晓红. 响应面法优化复合酶提取灵芝总三萜工艺[J]. 食品工业,2018,39(8):40−44. [DING Xiaoxiao, LI Fengwei, YU Xiaohong. Optimization of complex enzyme extraction technology of total triterpenoids from Ganoderma lucidum by response surface methodology[J]. Food Industry,2018,39(8):40−44.
    [11]
    JUN X. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials[J]. Critical Reviews in Food Science and Nutrition,2013,53:837−852. doi: 10.1080/10408398.2011.561380
    [12]
    ZHANG H N, LI X, MA Y K. One possibility on the mechanism of high hydrostatic pressure assisted extraction study on the mechanism of high hydrostatic pressure assisted extraction[J]. Food Science,2017,38(12):190−195.
    [13]
    孙培龙. 三萜类物质的提取及抗肿瘤活性研究[D]. 上海: 上海应用技术大学, 2016.

    SUN Peilong. Extraction of triterpenoids and study on their antitumor activity [D]. Shanghai: Shanghai Universities of Applied Sciences, 2016.
    [14]
    周晓. 灵芝中三萜类化合物的提取及其抗氧化活性研究[D]. 济南: 齐鲁工业大学, 2015.

    ZHOU Xiao. Extraction and antioxidant activity of triterpenoids from Ganoderma lucidum[D]. Jinan: Qilu University of Technology, 2015.
    [15]
    袁媛. 高纯灵芝酸的分离纯化工艺研究[D]. 合肥: 合肥工业大学, 2007.

    YUAN Yuan. Study on the separation and purification process of high-purity ganoderic acid [D]. Hefei: Hefei University of Technology, 2007.
    [16]
    钟千贵, 陈天赐, 邱铭锰, 等. 无柄灵芝提取物中营养成分及体外抗氧化活性分析[J]. 食品工业科技,2020,41(19):321−326. [ZHONG Qiangui, CHEN Tianci, QJU Mingmeng, et al. Analysis of nutritional components and antioxidant activity in vitro of Ganoderma sessiliforme extract[J]. Science and Technology of Food Industry,2020,41(19):321−326.
    [17]
    贾瑞博, 赵慧, 刘凯丽, 等. 树舌灵芝总三萜提取工艺优化及其抗氧化作用研究[J]. 应用化工,2016,45(6):1030−1035. [JIA Ruibo, ZHAO Hui, LIU Kaili, et al. Optimization of extraction process of total triterpenes from Ganoderma applanatum and its antioxidant activity[J]. Applied Chemical Engineering,2016,45(6):1030−1035.
    [18]
    HUIXING Y. Separation engineering[M]. Beijing: China Petrochemical Press, 2002.
    [19]
    XI J. Ultrahigh pressure extraction of bioactive compounds fromplants-A review[J]. Critical Reviews in Food Science and Nutrition,2015,57(6):1097−1106.
    [20]
    訾鸿威. 超高压提取灵芝多糖及灵芝三萜的工艺研究[D]. 大连: 大连理工大学, 2020.

    XI Hongwei. Study on the extraction technology of Ganoderma lucidum polysaccharides and triterpenes by ultra-high pressure [D]. Dalian: Dalian University of Technology, 2020.
    [21]
    CORRALES M, TOEPFL S, BUTZ P. Innovative food science[J]. Emerging Technology,2008,9(12):85−91.
    [22]
    BEVERLY N. Sample preparation of pharmaceutical dosage forms challenges and strategies for sample prepatation and extraction[M]. AAPS Press, 2011.
    [23]
    李容, 卢小雪, 张德威, 等. 综合评分优选白茅根总酚酸和总三萜提取工艺[J]. 食品研究与开发,2013,34(24):77−80. [LI Rong, LU Xiaoxue, ZHANG Dewei, et al. Comprehensive score was used to optimize the extraction technology of total phenolic acids and total triterpenes from white thatch root[J]. Food Research and Development,2013,34(24):77−80. doi: 10.3969/j.issn.1005-6521.2013.24.022
    [24]
    郑士彬, 韩阳, 韩静, 等. 响应面法优化灵芝三萜回流提取工艺[J]. 中南药学,2015,13(4):378−382. [ZHENG Shibin, HAN Yang, HAN Jing, et al. Optimization of reflux extraction process of Ganoderma lucidum triterpenes by response surface method[J]. Central and South China Pharmacology,2015,13(4):378−382.
    [25]
    KAN Y J, CGEN T Q, WU Y B, et al. Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology[J]. Int J Biol Macromol,2015,72:151−157. doi: 10.1016/j.ijbiomac.2014.07.056
    [26]
    杨艳, 任亚梅, 马婷, 等. 响应面优化超声波提取猕猴桃根熊果酸工艺[J]. 食品科学,2014,35(4):44−49. [YANG Yan, REN Yamei, MA Ting, et al. Response surface optimization of ultrasonic extraction of ursolic acid from kiwifruit root[J]. Food Science,2014,35(4):44−49. doi: 10.7506/spkx1002-6630-201404010
    [27]
    杨晓艳, 马骥, 彭飞, 等. 响应面法优化荚果蕨总三萜超声提取工艺[J]. 食品工业科技,2014,35(15):200−204,209. [YANG Xiaoyan, MA Ji, PENG Fei, et al. Optimization of ultrasonic extraction technology of total triterpenes from Dryopteris przewalskii by response surface method[J]. Science and Technology of Food Industry,2014,35(15):200−204,209.
    [28]
    李彦伟. 超高压提取黄精多糖工艺优化、结构分析及抗氧化性研究[D]. 大连: 大连理工大学, 2019.

    LI Yanwei. Process optimization, structure analysis and antioxidant activity of Polygonatum sibiricum polysaccharide extracted by ultra-high pressure [D]. Dalian: Dalian University of Technology, 2019.
    [29]
    陈瑞战. 超高压提取人参皂苷工艺及机理研究[D]. 长春: 吉林大学, 2005.

    CHEN Ruizhan. Study on the technology and mechanism of ultra-high pressure extraction of ginsenoside[D]. Changchun: Jilin University, 2005.
    [30]
    HUANG H W, HSU C P, YANG B B, et al. Advances in the extraction of natural ingredients by high pressure extraction technology[J]. Trends Food Sci Technol,2013,33:54−62. doi: 10.1016/j.jpgs.2013.07.001
    [31]
    闫光军, 张宝江, 徐道娟. 几种常用人参提取工艺研究比较[J]. 山东医药工业,2002,21(4):8. [YAN Guangjun, ZHANG Baojiang, XU Daojuan. Study and comparison of several commonly used extraction processes of Panax ginseng[J]. Shandong Pharmaceutical Industry,2002,21(4):8. doi: 10.3969/j.issn.1672-7738.2002.04.008
  • Cited by

    Periodical cited type(11)

    1. 杨集镪,曾穗雯. 原子荧光光谱仪测定食品中汞含量的研究. 食品安全导刊. 2023(01): 111-113 .
    2. 程梦蓉,蒋国振,王婧,吴静,姬玲霞. 直接测汞仪测定大米粉中总汞含量的不确定度评定. 粮食与食品工业. 2023(03): 53-58 .
    3. 梁良,杜雨馨,杨子建. 基于支持向量机的多环芳烃光谱定量分析. 激光杂志. 2023(06): 220-224 .
    4. 金凯. 测汞仪直接测定水中汞的不确定度评定. 现代食品. 2023(23): 166-169 .
    5. 赵忠良. 原子荧光仪在地质矿物硒元素测定中的应用. 化工管理. 2022(18): 103-105 .
    6. 姚成虎,王滢,杨启鹏,洪成山,王岁岁,孙涓,毛小庆. 电感耦合等离子质谱法测定蟹黄中4种重金属含量的不确定度评定. 现代农业科技. 2022(18): 155-159+164 .
    7. 张阔,冯金奎,鄂立军. 照度测量不确定度研究. 中国特种设备安全. 2022(10): 22-25+41 .
    8. 王娟,华蓉,游金坤,邓雅元,孙达锋,杨璐敏,吴素蕊. 影响食用菌总汞含量测定准确度的关键技术探索. 中国食用菌. 2022(11): 60-66 .
    9. 贺璐,郑静. 电感耦合等离子体发射光谱法测定食品中钙、镁、磷、铁、锌、锰含量的不确定度评定. 化学分析计量. 2022(12): 83-87 .
    10. 李娟,辜芸,谭洪涛,周鸿. 婴幼儿食品中总汞含量检测方法的研究. 实验与检验医学. 2022(05): 524-525+546 .
    11. 程君,卢嘉砾,余松柏. 催化热解-冷原子吸收分光光度法测定石膏中总汞的不确定度评定. 中国水泥. 2022(S1): 16-21 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (208) PDF downloads (18) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return