LIU Xiaofang, HUANG Yuelei, LENG Kailiang, et al. Optimization of Decolorization Process of Antarctic Krill Peptides by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(23): 218−225. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030136.
Citation: LIU Xiaofang, HUANG Yuelei, LENG Kailiang, et al. Optimization of Decolorization Process of Antarctic Krill Peptides by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(23): 218−225. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030136.

Optimization of Decolorization Process of Antarctic Krill Peptides by Response Surface Methodology

More Information
  • Received Date: March 10, 2022
  • Available Online: October 08, 2022
  • In order to optimize the decolorization process of Antarctic krill peptides and improve the product quality, activated carbon adsorption method was used to remove the pigment from the Antarctic krill peptides solution. Taking the decolorization rate and protein retention rate as the evaluation indexes, the influence of four independent variables including dosage of activated carbon, pH, decolorization temperature and decolorization time on the decolorization effect were investigated respectively. On the basis of single factor experiment, three independent variables including dosage of activated carbon, pH and decolorization time were optimized by the response surface methodology under the decolorization temperature of 50 ℃. Results showed that powdered activated carbon was more suitable for the removal of pigment from Antarctic krill peptides when compared with granular activated carbon, and the optimal conditions determined by response surface methodology were as follows: dosage of activated carbon 4.0%, pH1.5 and decolorization time 1.0 h. Under the optimal conditions, the decolorization rate was 82.19%±0.20% and the protein retention rate was 90.93%±2.28%. The decolorization treatment had no obvious effects on the proportion of essential amino acids and nonessential amino acids in the amino acid compositions as well as the molecular weight distribution of Antarctic krill peptides. This research would provide scientific support for the development of high-quality Antarctic krill peptides products.
  • [1]
    赵宪勇, 左涛, 冷凯良, 等. 南极磷虾渔业发展的工程科技需求[J]. 中国工程科学,2016,18(2):85−90. [ZHAO X Y, ZUO T, LENG K L, et al. Engineering science and technology challenges in the Antarctic krill fishery[J]. Strategic Study of CAE,2016,18(2):85−90. doi: 10.3969/j.issn.1009-1742.2016.02.013
    [2]
    刘永新, 李梦龙, 方辉, 等. 南极磷虾的资源概况与生态系统功能[J]. 水产学杂志,2019,32(1):55−60. [LIU Y X, LI M L, FANG H, et al. Resources status and ecosystem function in Antarctic krill[J]. Chinese Journal of Fisheries,2019,32(1):55−60. doi: 10.3969/j.issn.1005-3832.2019.01.010
    [3]
    TOU J C, JACZYNSKI J, CHEN Y C. Krill for human consumption: Nutritional value and potential health benefits[J]. Nutrition Reviews,2007,65(2):63−77.
    [4]
    WANG L Z, XUE C H, WANG Y M, et al. Extraction of proteins with low fluoride level from Antarctic krill (Euphausia superba) and their composition analysis[J]. Journal of Agricultural and Food Chemistry,2011,59(11):6108−6112. doi: 10.1021/jf201009t
    [5]
    刘志东, 王鲁民, 陈雪忠, 等. 南极磷虾蛋白的研究进展[J]. 食品与发酵工业,2017,43(7):242−251. [LIU Z D, WANG L M, CHEN X Z, et al. Research progress on the protein derived from Antarctic krill (Euphausia superba Dana)[J]. Food and Fermentation Industries,2017,43(7):242−251. doi: 10.13995/j.cnki.11-1802/ts.013481
    [6]
    刘柯欣, 林松毅, 胡胜杰, 等. 南极磷虾蛋白营养与功能特性及食用安全性研究进展[J/OL]. 食品科学: 1−15 [2022-03-10]. DOI: 10.7506/spkx1002-6630-20210301-007.

    LIU K X, LIN S Y, HU S J, et al. Advances in nutritional and functional properties and food safety of Antarctic krill protein[J/OL]. Food Science: 1−15 [2022-03-10]. DOI: 10.7506/spkx1002-6630-20210301-007.
    [7]
    刘小芳, 颜征, 冷凯良, 等. 南极磷虾多肽的组成及其抗氧化与ACE抑制活性[J]. 食品研究与开发,2020,41(23):7−13. [LIU X F, YAN Z, LENG K L, et al. Composition analysis and evaluation of the antioxidative and ACE inhibitory activities of polypeptides from Antarctic krill[J]. Food Research and Development,2020,41(23):7−13. doi: 10.12161/j.issn.1005-6521.2020.23.002
    [8]
    郑景如, 孙馨娉, 蔡紫仪, 等. 优选南极磷虾蛋白肽抗氧化活性组分[J]. 食品安全质量检测学报,2020,11(1):189−195. [ZHENG J R, SUN X P, CAI Z Y, et al. Optimizing the antioxidant components of Antarctic krill protein peptides[J]. Journal of Food Safety and Quality,2020,11(1):189−195. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.01.035
    [9]
    WANG Y C, WANG S S, WANG J F, et al. Preparation and anti-osteoporotic activities in vivo of phosphorylated peptides from Antarctic krill (Euphausia superba)[J]. Peptides,2015,68:239−245. doi: 10.1016/j.peptides.2014.10.004
    [10]
    HAN L H, MAO X Z, WANG K, et al. Phosphorylated peptides from Antarctic krill (Euphausia superba) ameliorated osteoporosis by activation of osteogenesis-related MAPKs and PI3K/AKT/GSK-3β pathways in dexamethasone-treated mice[J]. Journal of Functional Foods,2018,47:447−456. doi: 10.1016/j.jff.2018.06.004
    [11]
    ZHAO Y Q, ZHANG L, TAO J, et al. Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill (Euphausia superba): Isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs)[J]. Food Research International,2019,121:197−204. doi: 10.1016/j.foodres.2019.03.035
    [12]
    徐恺. 南极磷虾肽抗疲劳、耐缺氧以及抗衰老、提高免疫力实验研究[D]. 青岛: 中国海洋大学, 2012

    XU K. Experimental study of the functions of Antarctic krill peptide on fatigue resistance, anti-hypoxia, anti-aging and immunity improvement[D]. Qingdao: Ocean University of China, 2012.
    [13]
    JI W, ZHANG C H, JI H W. Purification, identification and molecular mechanism of two dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from Antarctic krill (Euphausia superba) protein hydrolysate[J]. Journal of Chromatography B,2017,1064:56−61. doi: 10.1016/j.jchromb.2017.09.001
    [14]
    于建伟, 杜芬, 陶宇, 等. 南极磷虾肽抗皮肤光老化作用的研究[J]. 食品工业科技,2021,42(20):372−376. [YU J W, DU F, TAO Y, et al. Study on anti-aging activity of peptide from Antarctic krill[J]. Science and Technology of Food Industry,2021,42(20):372−376. doi: 10.13386/j.issn1002-0306.2021030351
    [15]
    刘云娇, 张海燕, 刘淑晗, 等. 响应面优化南极磷虾蛋白酶解工艺及蛋白肽组分分析[J]. 现代食品科技,2019,35(1):144−151,280. [LIU Y J, ZHANG H Y, LIU S H, et al. Response surface optimization of proteolytic process and protein peptide composition analysis of Antarctic krill[J]. Modern Food Science and Technology,2019,35(1):144−151,280.
    [16]
    张华丹, 张玲云, 张国玉, 等. 响应面法优化南极磷虾蛋白酶解工艺条件[J]. 食品工业,2019,40(7):94−98. [ZHANG H D, ZHANG L Y, ZHANG G Y, et al. Optimization of proteolytic conditions of Antarctic krill by response surface methodology[J]. The Food Industry,2019,40(7):94−98.
    [17]
    孙如男, 冷凯良, 高华, 等. 南极磷虾金属螯合肽蛋白基料的酶解制备工艺优化[J]. 食品科技,2020,45(7):159−165. [SUN R N, LENG K L, GAO H, et al. Optimization of enzymatic hydrolysis preparation of the protein-based material for the production of Antarctic krill metal-chelating peptide[J]. Food Science and Technology,2020,45(7):159−165.
    [18]
    张雪, 令狐青青, 童晓倩, 等. 响应面法优化鱿鱼(Ommastrephes bartrami)皮胶原蛋白提取液脱色工艺[J]. 海洋与湖沼,2015,46(1):221−227. [ZHANG X, LINGHU Q Q, TONG X Q, et al. Optimization of decoloring for collagen extraction from squid (Ommastrephes bartrami) skin with activated carbon[J]. Oceanologia Et Limnologia Sinica,2015,46(1):221−227.
    [19]
    郭玉华, 李钰金, 吴新颖, 等. 鳕鱼皮胶原蛋白肽酶解液脱色脱腥工艺的研究[J]. 中国食品添加剂,2010,4:125−128. [GUO Y H, LI Y J, WU X Y, et al. Study on decoloring and deodorization of cod skin enzymolysis collagen peptide liquid[J]. China Food Additives,2010,4:125−128. doi: 10.3969/j.issn.1006-2513.2010.03.022
    [20]
    刘闪, 刘培勇, 刘良忠, 等. 鲟鱼皮胶原蛋白肽酶解液脱色工艺的研究[J]. 食品工业,2013,34(9):120−123. [LIU S, LIU P Y, LIU L Z, et al. Study on decoloring of sturgeon skin enzymolysis collagen peptide liquid[J]. The Food Industry,2013,34(9):120−123.
    [21]
    胡文婷, 张凯, 刘海青. 鳕鱼碎肉酶解液脱腥脱苦的研究[J]. 生物加工过程,2007,5(1):56−59. [HU W T, ZHANG K, LIU H Q. Study of deodorization of hydrolysates from fish offal of pollock[J]. Chinese Journal of Bioprocess Engineering,2007,5(1):56−59. doi: 10.3969/j.issn.1672-3678.2007.01.011
    [22]
    胡庆萍, 魏鉴腾, 裴栋, 等. 响应面法优化鱼籽多肽酶解液脱色工艺[J]. 食品工业科技,2016,37(21):189−194. [HU Q P, WEI J T, PEI D, et al. Optimization of decoloring process of enzymatic hydrolysate of fish roes peptide by response surface methodology[J]. Science and Technology of Food Industry,2016,37(21):189−194.
    [23]
    李福后, 黄岳磊, 刘小芳, 等. 正交实验优化南极磷虾蛋白肽的纳滤脱盐工艺[J/OL]. 渔业科学进展: 1−9 [2022-03-11]. DOI: 10.19663/j.issn2095-9869.20210901002.

    LI F H, HUANG Y L, LIU X F, et al. Optimization of a nanofiltration desalination process for Antarctic krill peptides using orthogonal tests[J/OL]. Progress in Fishery Sciences: 1−9 [2022-03-11]. DOI:10.19663/j.issn 2095-9869.20210901002.
    [24]
    章绍兵, 甘晓露, 龚琴. 花生蛋白酶解液的活性炭脱色工艺研究[J]. 河南工业大学学报(自然科学版),2011,32(2):10−14. [ZHANG S B, GAN X L, GONG Q. Study of deodorization of enzymatic hydrolysate of peanut protein by activated carbon[J]. Journal of Henan University of Technology (Natural Science Edition),2011,32(2):10−14.
    [25]
    XIAO C Q, ZHENG L, SU G W, et al. Effect of solution pH and activated carbon dosage on the decolourization ability, nitrogen components and antioxidant activity of peanut meal hydrolysate[J]. International Journal of Food Science and Technology,2014,49:2571−2577. doi: 10.1111/ijfs.12587
    [26]
    吴舜, 张桂娟, 吕文博. 龙牙楤木芽多糖提取与脱色工艺的研究[J]. 保鲜与加工,2016,16(6):80−86,91. [WU S, ZHANG G J, LYU W B. Study on extraction and decoloration technologies of polysaccharides from Aralia elata (Miq.) Seem. Buds[J]. Storage and Process,2016,16(6):80−86,91.
    [27]
    魏连会, 阮长青. 响应面法优化酱油中多肽的脱色工艺[J]. 食品工业科技,2013,34(10):235−238, 242. [WEI L H, RUAN C Q. Optimization of decoloring of soy sauce peptide solution by response surface methodology[J]. Science and Technology of Food Indestry,2013,34(10):235−238, 242.
    [28]
    肖怀秋, 李玉珍, 林亲录, 等. 冷榨花生蛋白酶解液活性炭脱色工艺的响应面优化研究[J]. 中国油脂,2014,39(10):34−38. [XIAO H Q, LI Y Z, LIN Q L, et al. Optimization of bleaching of cod-pressed peanut protein hydrolysate with activated carbon by response surface methodology[J]. China Oils and Fats,2014,39(10):34−38.
    [29]
    徐曼, 马寒冰, 李铮, 等. 粉末活性炭脱色豆粕蛋白酶解液的条件优化[J]. 食品工业科技,2013,34(11):263−266. [XU M, MA H B, LI Z, et al. Optimization of conditions for soybean meal protease hydrolysate decolourization with powdered activated carbon[J]. Science and Technology of Food Industry,2013,34(11):263−266.
    [30]
    SESSA D J, PALMQUIST D E. Effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing yellow zein[J]. Bioresource Technology,2008,99(14):6360−6364. doi: 10.1016/j.biortech.2007.11.076
    [31]
    谢博, 傅红, 杨方. 生物活性肽的制备、分离纯化、鉴定以及构效关系研究进展[J]. 食品工业科技,2021,42(5):383−391. [XIE B, FU H, YANG F. Research progress on preparation, purification, identification and structure-activity relationship of bioactive peptides[J]. Science and Technology of Food Industry,2021,42(5):383−391.
    [32]
    夏光华, 申铉日, 酒志强, 等. 大孔树脂对罗非鱼皮胶原蛋白抗氧化肽脱盐作用的研究[J]. 现代食品科技,2013,29(5):1052−1056. [XIA G H, SHEN X R, JIU Z Q, et al. Desalination of microporous absorption resin on antioxidant peptides from tilapia skin collagen[J]. Modern Food Science and Technology,2013,29(5):1052−1056.
  • Cited by

    Periodical cited type(1)

    1. 何静,柏松,谢光杰,罗玲,黄治国,卫春会. 酿酒污水资源化应用性能及风险分析. 中国酿造. 2024(01): 113-118 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (212) PDF downloads (23) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return