ZHOU Jiaqi, MA Chunyan, LI Xiaohui. Design, Synthesis and Bioactivity of Polypeptide ACE Inhibitors[J]. Science and Technology of Food Industry, 2022, 43(23): 26−34. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030117.
Citation: ZHOU Jiaqi, MA Chunyan, LI Xiaohui. Design, Synthesis and Bioactivity of Polypeptide ACE Inhibitors[J]. Science and Technology of Food Industry, 2022, 43(23): 26−34. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030117.

Design, Synthesis and Bioactivity of Polypeptide ACE Inhibitors

More Information
  • Received Date: March 09, 2022
  • Available Online: October 08, 2022
  • In this study, using angiotensin converting enzyme (ACE) inhibitory peptides PHP1 and PHP2 as the parent peptides, the hydrophobicity and electrical properties of target polypeptides were altered by substituting amino acid residues. In addition, the potential bioactivity of these polypeptides was assessed using bioinformatics tools. Following this analysis, 19 polypeptide analogues were designed and synthesized using solid-phase synthesis, and their bioactivities were detected in vitro. The results revealed that the polypeptide analogues showed relatively high ACE inhibitory activities, PHP1A-6 (IC50=3.87 μmol/L), PHP2A-3 (IC50=3.33 μmol/L), PHP2A-4 (IC50=2.86 μmol/L), and PHP2A-7 (IC50=4.58 μmol/L) exhibited the highest ACE inhibitory activity levels, significantly higher than the parent peptides (P<0.05). PHP1A-3, PHP1A-4, PHP1A-7, PHP2A-1 and PHP2A-10 displayed equal levels of inhibitory activity in comparison to the parent peptides (IC50<10 μmol/L). Compared with the parent peptides, the α-glucosidase inhibitory activity levels demonstrated by most of the polypeptide analogues were significantly enhanced, PHP1A-3 (IC50=3.09 μmol/L), PHP1A-7 (IC50=9.51 μmol/L), PHP2A-6 (IC50=5.58 μmol/L), PHP2A-11 (IC50=2.35 μmol/L), and PHP2A-12 (IC50=3.98 μmol/L) exhibited the highest activities. Additionally, PHP1A-3 and PHP1A-7 displayed relatively strong inhibitory activity against both ACE and α-glucosidase. At concentrations of 1 mg/mL, the polypeptides containing Cys displayed an ABTS+· scavenging rate of higher than 85%, demonstrating a potential antioxidant activity. The structure-activity relationship between the ACE inhibitory peptides and ACE were explored using molecular docking. The results reflected that inhibitory peptides produced multiple stable hydrogen bonds, hydrophobic interactions, π-π stacking interactions, and salt bridges with ACE amino acid residues, thereby improving the inhibitory effects exerted on ACE.
  • [1]
    WEI D, FAN W L, XU Y. Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis[J]. Food Chemistry,2021,353(15):129521.
    [2]
    MELO J A F, DALPIAZ P L M, ESCOUTO L D S, et al. Involvement of sex hormones, oxidative stress, ACE and ACE2 activity in the impairment of renal function and remodelling in SHR[J]. Life Sciences,2020,257(15):118138.
    [3]
    XU Z Q, WU C P, SUN W D, et al. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein isolate: Their production conditions and in silico molecular docking with ACE[J]. Food Chemistry,2021,345(30):128855.
    [4]
    FAN Y, YU Z P, ZHAO W Z, et al. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea Titin[J]. Food Science and Human Wellness,2020,9(3):257−263. doi: 10.1016/j.fshw.2020.04.001
    [5]
    LI M Y, FAN W L, XU Y. Identification of angiotensin converting enzyme (ACE) inhibitory and antioxidant peptides derived from Pixian broad bean paste[J]. LWT,2021,151(3):112221.
    [6]
    GIACOMETTI C F, PARRA B D, DOMINGUES G B, et al. High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity[J]. Food Chemistry,2020,333(6):127482.
    [7]
    GONZALEZ A J A, CABRERA D Z, MATALLANA A M, et al. In-silico design of new enalapril analogs (ACE inhibitors) using QSAR and molecular docking models[J]. Informatics in Medicine Unlocked,2020,19(13):100336.
    [8]
    ISHAK N H, SHAIK M I, YELLAPU N K, et al. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate[J]. Journal of Food Science and Technology,2021,58(12):4567−4577. doi: 10.1007/s13197-020-04944-y
    [9]
    GUO Y T, WANG K, WU B G, et al. Production of ACE inhibitory peptides from corn germ meal by an enzymatic membrane reactor with a novel gradient diafiltration feeding working-mode and in vivo evaluation of antihypertensive effect[J]. Journal of Functional Foods,2020,64(9):103584.
    [10]
    CHAMATA Y, WATSON K A, JAUREGI P. Whey-derived peptides interactions with ACE by molecular docking as a potential predictive tool of natural ACE inhibitors[J]. International Journal of Molecular Sciences,2020,21(3):864. doi: 10.3390/ijms21030864
    [11]
    ZOHRAB F, ASKARIAN S, JALILI A, et al. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily[J]. International Journal of Peptide Research and Therapeutics,2019,25(1):39−48. doi: 10.1007/s10989-018-9723-8
    [12]
    SU L Y, XIN H Y, LIU Y L, et al. Anticancer bioactive peptide (ACBP) inhibits gastric cancer cells by upregulating growth arrest and DNA damage-inducible gene 45A (GADD45A)[J]. Tumor Biology,2014,35(10):10051−10056. doi: 10.1007/s13277-014-2272-7
    [13]
    MIRZAEI M, MIRDAMADI S, SAFAVI M, et al. In vitro and in silico studies of novel synthetic ACE-inhibitory peptides derived from Saccharomyces cerevisiae protein hydrolysate[J]. Bioorganic Chemistry,2019,87(1):647−654.
    [14]
    ACHARYA K R, STURROCK E D, RIORDAN J F, et al. Ace revisited: A new target for structure-based drug design[J]. Nature Reviews Drug Discovery,2003,2(11):891−902. doi: 10.1038/nrd1227
    [15]
    WU J, ALUKO R E, NAKAI S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides[J]. Journal of Agricultural and Food Chemistry,2006,54(3):732−738. doi: 10.1021/jf051263l
    [16]
    KO J Y, KANG N, LEE J H, et al. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent[J]. Journal of Agricultural and Food Chemistry,2016,51(4):535−541.
    [17]
    GUERRERO L, CASTILLO J, QUIÑONES M, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies[J]. PLoS One,2012,7(11):e49493. doi: 10.1371/journal.pone.0049493
    [18]
    ZHANG P, CHANG C, LIU H J, et al. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa[J]. Journal of Functional Foods,2020,65(5):103751.
    [19]
    GARCÍA M P, MARTÍN M M, ANGELES B M, et al. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities[J]. Food Chemistry,2017,221(26):464−472.
    [20]
    MIRZAEI M, MIRDAMADI S, SAFAVI M. Structural analysis of ACE-inhibitory peptide (VL-9) derived from kluyveromyces marxianus protein hydrolysate[J]. Journal of Molecular Structure,2020,1213(5):128199.
    [21]
    ASHOK A, BRIJESHA N, APARNA H S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity[J]. European Journal of Medicinal Chemistry,2019,180(15):99−110.
    [22]
    DENG X, MAI R Y, ZHANG C Y, et al. Synthesis and pharmacological evaluation of a novel synthetic peptide CWHTH based on the styela clava-derived natural peptide LWHTH with improved antioxidant, hepatoprotective and angiotensin converting enzyme inhibitory activities[J]. International Journal of Pharmaceutics,2021,605(10):120852.
    [23]
    AMSO Z, KOWALCZYK R, WATSON M, et al. Structure activity relationship study on the peptide hormone preptin, a novel bone-anabolic agent for the treatment of osteoporosis[J]. Organic & Biomolecular Chemistry,2016,14(39):9225−9238.
    [24]
    YU Y K, HU J E, MIYAGUCHI Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides,2006,27(11):2950−2956. doi: 10.1016/j.peptides.2006.05.025
    [25]
    HUI L X, LI Y H, EN H J, et al. Synthesis and biological activities of hemoglobin fragments[J]. Chemical Research in Chinese Universities,2008,29(3):542−545.
    [26]
    GASTEIGER E, HOOGLAND C, GATTIKER A, et al. Protein identification and analysis tools on the ExPASy server[M]. Paterson: Humana Press, 2005: 571-607.
    [27]
    KUMAR R, CHAUDHARY K, SINGH C J, et al. An in silico platform for predicting, screening and designing of antihypertensive peptides[J]. Scientific Reports,2015,5(1):12512. doi: 10.1038/srep12512
    [28]
    MOONEY C, HASLAM N J, POLLASTRI G, et al. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity[J]. PloS One,2012,7(10):e45012. doi: 10.1371/journal.pone.0045012
    [29]
    ZHANG Y, HE S D, RUI X, et al. Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting enzyme (ACE), α-amylase and lipase[J]. Food Chemistry,2022,367(1):130695.
    [30]
    KAISER E, COLESCOTT R L, BOSSINGER C D, et al. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides[J]. Analytical Biochemistry,1970,34(2):595−598. doi: 10.1016/0003-2697(70)90146-6
    [31]
    骆琳, 丁青芝, 马海乐. 96孔板法用于高通量血管紧张素转化酶抑制剂体外检测[J]. 分析化学,2012,40(1):129−134. [LUO L, DING Q Z, MA H L. Establishment of in vitro high-throughputactivity detection method for angiotensin converting enzyme inhibitors based on 96 well plates[J]. Chinese Journal of Analytical Chemistry,2012,40(1):129−134.
    [32]
    XU H W, DAI G F, LIU G Z, et al. Synthesis of andrographolide derivatives: A new family of α-glucosidase inhibitors[J]. Bioorganic & Medicinal Chemistry,2007,15(12):4247−4255.
    [33]
    LIU C, LIU J B, WANG M Q, et al. Construction and application of membrane-bound angiotensin-I converting enzyme system: A new approach for the evaluation of angiotensin-I converting enzyme inhibitory peptides[J]. Journal of Agricultural and Food Chemistry,2020,68(20):5723−5731. doi: 10.1021/acs.jafc.9b08082
    [34]
    HAO L, GAO X C, ZHOU T Y, et al. Angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activity of umami peptides after in vitro gastrointestinal digestion[J]. Journal of Agricultural and Food Chemistry,2020,68(31):8232−8241. doi: 10.1021/acs.jafc.0c02797
    [35]
    林凯. 基于结构信息学定向水解曲拉酪蛋白及新型降压肽的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020

    LIN K. Screening of novel antihypertensive peptides by directed hydrolysis in Qula casein based on the structural informatics[D]. Harbin: Harbin Institute of Technology, 2020
    [36]
    IBRAHIM H R, AHMED A S, MIYATA T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk[J]. Journal of Advanced Research,2017,8(1):63−71. doi: 10.1016/j.jare.2016.12.002
    [37]
    GUANG C, PHILLIPS R D. Plant food-derived angiotensin I converting enzyme inhibitory peptides[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5113−5120. doi: 10.1021/jf900494d
    [38]
    MAESTRI E, PAVLICEVIC M, MONTORSI M, et al. Meta-analysis for correlating structure of bioactive peptides in foods of animal origin with regard to effect and stability[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(1):3−30. doi: 10.1111/1541-4337.12402
    [39]
    IBRAHIM M A, BESTER M J, NEITZ A W H, et al. Structural properties of bioactive peptides with α-glucosidase inhibitory activity[J]. Chemical Biology & Drug Design,2018,91(2):370−379.
    [40]
    MUDGIL P, KAMAL H, PRIYA K B, et al. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides[J]. Food Chemistry,2021,353(15):129374.
    [41]
    ZHAO Q, WEI G Q, LI K L, et al. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein[J]. LWT,2022,156(15):113062.
    [42]
    ARISE R O, IDI J J, MIC B I M, et al. In vitro angiotesin-1-converting enzyme, α-amylase and α-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L. ) M. Roem seed protein hydrolysate[J]. Heliyon,2019,5(5):e01634. doi: 10.1016/j.heliyon.2019.e01634
    [43]
    ZHENG L, ZHAO Y J, DONG H Z, et al. Structure–activity relationship of antioxidant dipeptides: Dominant role of Tyr, Trp, Cys and Met residues[J]. Journal of Functional Foods,2016,21(13):485−496.
    [44]
    MIRZAEI M, MIRDAMADI S, SAFAVI M, et al. The stability of antioxidant and ACE-inhibitory peptides as influenced by peptide sequences[J]. LWT,2020,130(26):109710.
  • Cited by

    Periodical cited type(10)

    1. 宋永贵,陈运丽,苏丹,李前民,李惠珍,艾志福,杨明,朱根华,陈丽玲. 龙骨-牡蛎通过调节肠道微生态增强柴胡加龙骨牡蛎汤的抗抑郁效应. 中成药. 2025(02): 625-633 .
    2. 崔雨婷,张方圆,许伟明,李子贇,胡镜清. 基于肠道菌群与冠心病的关系探讨“阴火”科学内涵. 世界中医药. 2024(09): 1279-1285 .
    3. 叶清珠,王苗苗. 植物抗菌色素在抗菌纺织品中的应用. 上海纺织科技. 2024(07): 8-11+17 .
    4. 尹东,杜丽坤,徐洪涛,任那,张天昊. 基于肠道菌群探析中医药治疗肥胖的研究进展. 西部中医药. 2024(09): 111-114 .
    5. 王其龙,杨景森,黄凯勇,朱翠. 小檗碱调控动物肠道菌群稳态的研究进展. 中国畜牧杂志. 2022(02): 23-26+31 .
    6. 罗晓璐,李丽娜,黎京荣,彭啸峰,吴鹏,朱翠. 饲喂有抗或无抗饲粮的黄羽肉鸡在不同日龄下肠道菌群的变化. 广东畜牧兽医科技. 2022(01): 6-13 .
    7. 余佳,高欣悦,付凤萍,吴建英,余琳,陈红英. 半仿生-比色法测定三黄泻心汤中总生物碱的溶出量. 湖北农业科学. 2022(03): 140-143 .
    8. 柯群华,彭晶,王胜义. 中药与肠道菌群及其代谢相关研究进展. 中兽医医药杂志. 2022(02): 35-40 .
    9. 刘良浩,蒋志滨,于海洋,吴志斌,李泠君,唐甜,高洁. 黄连素缓解肠易激综合征作用机制的研究进展. 中国病理生理杂志. 2022(05): 944-948 .
    10. 姚广丰,张奇,张楠,隋玲玲,刘佳,李威,胡铁军. 盐酸小檗碱相关杂质的合成. 辽宁化工. 2022(06): 763-765 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (319) PDF downloads (42) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return