Citation: | CHEN Mengxia, WANG Ni, MENG Fanqiang, et al. Isolation of Gingerols and Its Preventive Effect on Insulin Resistance of HepG2 Cells[J]. Science and Technology of Food Industry, 2022, 43(22): 387−395. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030039. |
[1] |
WANG H, LIU S, CUI Y, et al. Hepatoprotective effects of flavonoids from common buckwheat hulls in type 2 diabetic rats and HepG2 cells[J]. Food Science & Nutrition,2021,9(9):4793−4802.
|
[2] |
ZHAO Y, XING H. A different perspective for management of diabetes mellitus: Controlling viral liver diseases[J]. J Diabetes Res,2017(2017):5625371.
|
[3] |
BEDI O, AGGARWAL S, TREHANPATI N, et al. Molecular and pathological events involved in the pathogenesis of diabetes-associated nonalcoholic fatty liver disease[J]. J Clin Exp Hepatol,2019,9(5):607−618. doi: 10.1016/j.jceh.2018.10.004
|
[4] |
DOU Z, LIU C, FENG X, et al. Camel whey protein (CWP) ameliorates liver injury in type 2 diabetes mellitus rats and insulin resistance (IR) in HepG2 cells via activation of the PI3K/Akt signaling pathway[J]. Food & Function,2021,13(1):255−269.
|
[5] |
WANG C, BATEY R, YAMAHARA J, et al. Multiple molecular targets in the liver, adipose tissue and skeletal muscle in ginger-elicited amelioration of nonalcoholic fatty liver disease[J]. Journal of Functional Foods,2017,36:43−51. doi: 10.1016/j.jff.2017.06.040
|
[6] |
KIM H J, KIM B, MUN E G, et al. The antioxidant activity of steamed ginger and its protective effects on obesity induced by high-fat diet in C57BL/6J mice[J]. Nutr Res Pract,2018,12(6):503−511. doi: 10.4162/nrp.2018.12.6.503
|
[7] |
SHUKLA A, NAIK S N, GOUD V V, et al. Supercritical CO2 extraction and online fractionation of dry ginger for production of high-quality volatile oil and gingerols enriched oleoresin[J]. Industrial Crops and Products,2019,130:352−362. doi: 10.1016/j.indcrop.2019.01.005
|
[8] |
SEMWAL R B, SEMWAL D K, COMBRINCK S, et al. Gingerols and shogaols: Important nutraceutical principles from ginger[J]. Phytochemistry,2015,117:554−568. doi: 10.1016/j.phytochem.2015.07.012
|
[9] |
WEI Q Y, MA J P, CAI Y J, et al. Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger[J]. J Ethnopharmacol,2005,102(2):177−184. doi: 10.1016/j.jep.2005.05.043
|
[10] |
VARAKUMAR S, UMESH K V, SINGHAL R S. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning[J]. Food Chem,2017,216:27−36. doi: 10.1016/j.foodchem.2016.07.180
|
[11] |
FAJRIN F A, NUGROHO A E, NURROCHMAD A, et al. Ginger extract and its compound, 6-shogaol, attenuates painful diabetic neuropathy in mice via reducing TRPV1 and NMDAR2B expressions in the spinal cord[J]. J Ethnopharmacol,2020,249:112396. doi: 10.1016/j.jep.2019.112396
|
[12] |
CHAKRABORTY D, MUKHERJEE A, SIKDAR S, et al. [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice[J]. Toxicol Lett,2012,210(1):34−43. doi: 10.1016/j.toxlet.2012.01.002
|
[13] |
XU Y, BAI L, CHEN X, et al. 6-Shogaol ameliorates diabetic nephropathy through anti-inflammatory, hyperlipidemic, anti-oxidative activity in db/db mice[J]. Biomed Pharmacother,2018,97:633−641. doi: 10.1016/j.biopha.2017.10.084
|
[14] |
张明昶, 李健, 蒙继昭. 紫外分光光度法测定姜中姜辣素类化合物的含量[J]. 贵州医药,2003,27:283−284. [ZHANG M C, LI J, MENG J Z. Determination of gingerol compounds in ginger by UV spectrophotometry[J]. Guizhou Medicine,2003,27:283−284. doi: 10.3969/j.issn.1000-744X.2003.03.054
|
[15] |
李冰. 生姜挥发油成分分析及其主要活性成分6-姜酚的抗炎机制初步探究[D]. 沈阳: 中国医科大学, 2019
LI B. Analysis of volatile oil and preliminary study on anti-inflammatory mechanism of 6-gingerol, the main active component of ginger[D]. Shenyang: China Medical University, 2019.
|
[16] |
梅丽娟, 岳邵. 一种从生姜中提取纯化6-姜酚的方法: 中国, 201210553119.2[P]. 2014-12-03
MEI L J, YUE S. A method of extracting and purifying 6-gingerol from ginger: China, 201210553119.2[P]. 2014-12-03.
|
[17] |
潘勤, 吴孙. 一种高纯度总姜酚、其制备方法及用途: 中国, 201610771664.7[P]. 2018-03-09
PAN Q, WU S. Preparation method and use of high purity total gingerol: China, 201610771664.7[P]. 2018-03-09.
|
[18] |
AN K, WEI L, FU M, et al. Effect of carbonic maceration (CM) on the vacuum microwave drying of Chinese ginger (Zingiber officinale Roscoe) slices: Drying characteristic, moisture migration, antioxidant activity, and microstructure[J]. Food and Bioprocess Technology,2020,13(9):1661−1674. doi: 10.1007/s11947-020-02504-y
|
[19] |
AN K, ZHAO D, WANG Z. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure[J]. Food Chemistry,2016,197:1292−1300. doi: 10.1016/j.foodchem.2015.11.033
|
[20] |
肖徐阳. 基于肠道菌群和胰岛素通路研究黄芪甲苷降糖作用和机制[D]. 西安: 陕西科技大学, 2020
XIAO X Y. Study on the hypoglycemic effect and mechanism of astragaloside IV based on intestinal flora and insulin pathway[D]. Xi'an: Shaanxi University of Science and Technology, 2020.
|
[21] |
JIANG H W, MA Y J, YAN J Q, et al. Geniposide promotes autophagy to inhibit insulin resistance in HepG2 cells via P62/NF-κB/GLUT-4[J]. Molecular Medicine Reports,2017,16:7237−7244. doi: 10.3892/mmr.2017.7503
|
[22] |
MANDAL S K, BISWAS R, BHATTACHARYYA S S, et al. Lycopodine from Lycopodium clavatum extract inhibits proliferation of Hela cells through induction of apoptosis via caspase-3 activation[J]. Eur J Pharmacol,2010,626(2-3):115−122. doi: 10.1016/j.ejphar.2009.09.033
|
[23] |
项敏. 生姜中姜辣素的提取与分离工艺研究[D]. 武汉: 武汉工程大学, 2015
XIANG M. Extraction and separation of gingerol from ginger[D]. Wuhan: Wuhan Institute of Technology, 2015.
|
[24] |
BHATTARAI S, TRAN V H, DUKE C C. The stability of gingerol and shogaol in aqueous solutions[J]. Journal of Pharmaceutical Sciences,2001,90(10):1658−1664. doi: 10.1002/jps.1116
|
[25] |
张鲁明, 王龙厚, 周峥嵘, 等. 乙醇提取姜辣素的工艺条件研究[J]. 中国农学通报,2010,26(19):58−61. [ZHANG L M, WANG L H, ZHOU Z R, et al. Study on the technological conditions of ethanol extraction of gingerol[J]. Chinese Agricultural Science Bulletin,2010,26(19):58−61.
|
[26] |
李田叶, 刘卫华, 梁娜, 等. 评估生姜及其不同炮制品中姜辣素和其抗氧化活性[J]. 食品工业,2016,37(12):180−183. [LI T Y, LIU W H, LIANG N, et al. Evaluation of gingerol and its antioxidant activity in ginger and its processed products[J]. Food Industry,2016,37(12):180−183.
|
[27] |
SHUKLA A, GOUD V V, DAS C. Antioxidant potential and nutritional compositions of selected ginger varieties found in Northeast India[J]. Industrial Crops and Products,2019,128:167−176. doi: 10.1016/j.indcrop.2018.10.086
|
[28] |
刘步云, 王永丽, 张健, 等. 不同品种生姜的抗氧化及抗炎症活性[J]. 食品与发酵工业,2015,41(11):81−86. [LIU B Y, WANG Y L, ZHANG J, et al. Antioxidant and anti-inflammatory activities of different ginger cultivars[J]. Food and Fermentation Industries,2015,41(11):81−86.
|
[29] |
TOHMA H, GÜLÇIN İ, BURSAL E, et al. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS[J]. Journal of Food Measurement and Characterization,2016,11(2):556−566.
|
[30] |
BARTLETT P J, GASPERS L D, PIEROBON N, et al. Calcium-dependent regulation of glucose homeostasis in the liver[J]. Cell Calcium,2014,55(6):306−316. doi: 10.1016/j.ceca.2014.02.007
|
[31] |
LIU Y, LIANG X, ZHANG G, et al. Galangin and pinocembrin from propolis ameliorate insulin resistance in HepG2 Cells via regulating Akt/mTOR signaling[J]. Evid Based Complement Alternat Med,2018,2018:1−10.
|
[32] |
姜保平. 两色金鸡菊茶饮巧2型糖尿病膜岛素抵抗的预防作用及机制研究[D]. 北京: 北京协和医学院, 2015
JIANG B P. Study on the preventive effect and mechanism of membrane insulin resistance of type 2 diabetes mellitus by two-color golden chrysanthemum tea[D]. Beijing: Peking Union Medical College, 2015.
|
[33] |
王芳, 符晨星, 陈家顺, 等. 过氧化氢酶的生物学功能及在动物中的应用[J]. 饲料研究,2021,5:126−129. [WANG F, FU C X, CHEN J S, et al. Biological function and application of catalase in animals[J]. Feed Research,2021,5:126−129.
|
[34] |
SHANMUGAM K R, MALLIKARJUNA K, NISHANTH K, et al. Protective effect of dietary ginger on antioxidant enzymes and oxidative damage in experimental diabetic rat tissues[J]. Food Chemistry,2011,124(4):1436−1442. doi: 10.1016/j.foodchem.2010.07.104
|
[35] |
CULLEN M, TANIGUCHI B E A C R K. Critical nodes in signalling pathways: Insights into insulin action[J]. Nat Rev Mol Cell Biol,2006,7:85−96.
|
[36] |
DOMINIC SANTOLERI P M T. Resolving the paradox of hepatic insulin resistance[J]. Cellular and Molecular Gastroenterology and Hepatology,2019,7(2):447−456. doi: 10.1016/j.jcmgh.2018.10.016
|
[37] |
ZHANG J, CHEN Y, LIU C, et al. N(1)-methylnicotinamide improves hepatic insulin sensitivity via activation of SIRT1 and inhibition of FOXO1 acetylation[J]. J Diabetes Res,2020:1−11.
|
[38] |
CHEN B, ABAYDULA Y, LI D, et al. Taurine ameliorates oxidative stress by regulating PI3K/Akt/GLUT4 pathway in HepG2 cells and diabetic rats[J]. Journal of Functional Foods,2021,85:1−10.
|
[39] |
MAZIBUKO-MBEJE S E, DLUDLA P V, ROUX C, et al. Aspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3K/AKT and AMPK pathways[J]. Int J Mol Sci,2019,20(3):1−16.
|