Citation: | HU Ting, GENG Qin, FU Min, et al. The Interaction between Betanin and Whey Protein: Based on Multi-spectroscopy and Molecular Simulation[J]. Science and Technology of Food Industry, 2022, 43(23): 86−94. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020243. |
[1] |
AZEREDO H M C. Betalains: Properties, sources, applications, and stability-A review[J]. International Journal of Food Science & Technology,2009,44(12):2365−2376.
|
[2] |
ESATBEYOGLU T, WAGNER A E, SCHINI-KERTH V B, et al. Betanin a food colorant with biological activity[J]. Molecular Nutrition & Food Research,2015,59(1):36−47.
|
[3] |
GANDIA-HERRERO F, ESCRIBANO J, GARCIA-CARMONA F. Biological activities of plant pigments betalains[J]. Critical Reviews in Food Science and Nutrition,2016,56(6):937−945. doi: 10.1080/10408398.2012.740103
|
[4] |
TEIXEIRA DA SILVA D V, BAIAO D D S, SILVA F D O, et al. Betanin, a natural food additive: Stability, bioavailability, antioxidant and preservative ability assessments[J]. Molecules,2019,24:458. doi: 10.3390/molecules24030458
|
[5] |
CHEN L Y, REMONDETTO G E, SUBIRADE M. Food protein-based materials as nutraceutical delivery systems[J]. Trends in Food Science & Technology,2006,17(5):272−283.
|
[6] |
汪姣玲. 乳清蛋白美拉德改性及其产物功能特性研究 [D]. 无锡: 江南大学, 2015.
WANG J L. Study on characteristics and functional properties of Maillard reaction products from whey protein[D]. Wuxi: Jiangnan University, 2015.
|
[7] |
倪莹宙. 乳清分离蛋白乳状液/冷凝胶制备和消化研究 [D]. 无锡: 江南大学, 2016.
NI Y Z. Study on the preparation and in vitro digestion of whey protein isolate emulsions/cold-set gels[D]. Wuxi: Jiangnan University, 2016.
|
[8] |
ZHAO H S, MA Z, JING P. Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability[J]. Food Research International,2020,135:109289. doi: 10.1016/j.foodres.2020.109289
|
[9] |
MARTÍNEZ J H, VELÁZQUEZ F, BURRIEZA H P, et al. Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity[J]. Food Hydrocolloids,2019,87:880−890. doi: 10.1016/j.foodhyd.2018.09.016
|
[10] |
HUANG Y, LI A J, QIU C Y, et al. Self-assembled colloidal complexes of polyphenol-gelatin and their stabilizing effects on emulsions[J]. Food & Function,2017,8(9):3145−3154.
|
[11] |
LI C H, DAI T T, CHEN J, et al. Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin[J]. Food Chemistry,2021,339:128145. doi: 10.1016/j.foodchem.2020.128145
|
[12] |
CAI X, YU J N, XU L M, et al. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic alpha-amylase[J]. Food Chemistry,2015,174:291−298. doi: 10.1016/j.foodchem.2014.10.131
|
[13] |
DAI T T, CHEN J, MCCLEMENTS D J, et al. Protein-polyphenol interactions enhance the antioxidant capacity of phenolics: Analysis of rice glutelin-procyanidin dimer interactions[J]. Food & Function,2019,10(2):765−774.
|
[14] |
DAI T T, LI R Y, LIU C M, et al. Effect of rice glutelin-resveratrol interactions on the formation and stability of emulsions: A multiphotonic spectroscopy and molecular docking study[J]. Food Hydrocolloids,2019,97:105234. doi: 10.1016/j.foodhyd.2019.105234
|
[15] |
LAKOWICZ J R, WEBER G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale[J]. Biochemistry,1973,12(21):4171−4179. doi: 10.1021/bi00745a021
|
[16] |
KATO A, NAKAI S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J]. Biochimica Et Biophysica Acta,1980,624(1):13−20. doi: 10.1016/0005-2795(80)90220-2
|
[17] |
LI Y Q, CHEN Z X, MO H Z. Effects of pulsed electric fields on physicochemical properties of soybean protein isolates[J]. LWT-Food Science and Technology,2007,40(7):1167−1175. doi: 10.1016/j.lwt.2006.08.015
|
[18] |
王晓霞, 聂智华, 李松波, 等. 多光谱法与分子对接法研究盐酸四环素与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析,2018,38(8):2468−2476. [WANG X X, NIE Z H, LI S B, et al. Study on the interaction between etracycline hydrochloride and bovine serum albumin by multispectral and molecular docking[J]. Spectroscopy and Spectral Analysis,2018,38(8):2468−2476.
|
[19] |
LIU H, ZHANG Y, ZHANG J B, et al. Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: Norbixin[J]. Food Hydrocolloids,2022,124:107329. doi: 10.1016/j.foodhyd.2021.107329
|
[20] |
DAI T T, CHEN J, LI Q, et al. Investigation the interaction between procyanidin dimer and alpha-amylase: Spectroscopic analyses and molecular docking simulation[J]. International Journal of Biological Macromolecules,2018,113:427−433. doi: 10.1016/j.ijbiomac.2018.01.189
|
[21] |
吴云雪, 李娟, 高晴, 等. EGCG与乳清蛋白相互作用的光谱分析[J]. 食品研究与开发,2020,41(1):7−13. [WU Y X, LI J, GAO Q, et al. Spectral analysis of the interaction between EGCG and whey protein isolate[J]. Food Research and Development,2020,41(1):7−13. doi: 10.12161/j.issn.1005-6521.2020.01.002
|
[22] |
PESSATO T B, DE MORAIS F P R, DE CARVALHO N C, et al. Protein structure modification and allergenic properties of whey proteins upon interaction with tea and coffee phenolic compounds[J]. Journal of Functional Foods,2018,51:121−129. doi: 10.1016/j.jff.2018.10.019
|
[23] |
JOYE I J, DAVIDOV-PARDO G, LUDESCHER R D, et al. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins[J]. Food Chemistry,2015,185:261−267. doi: 10.1016/j.foodchem.2015.03.128
|
[24] |
ZHU J X, LI K J, WU H, et al. Multi-spectroscopic, conformational, and computational atomic-level insights into the interaction of beta-lactoglobulin with apigenin at different pH levels[J]. Food Hydrocolloids,2020,105:105810. doi: 10.1016/j.foodhyd.2020.105810
|
[25] |
张蕊, 吴超仪, 刘宇, 等. 分子对接和荧光光谱法研究麦角甾醇与牛血清白蛋白的相互作用[J]. 食品科学,2015,36(23):38−42. [ZHANG R, WU C Y, LIU Y, et al. Studies on the interaction of ergosterol with bovine serum albumin (BSA) by fluorescence spectroscopy and molecular docking[J]. Food Science,2015,36(23):38−42. doi: 10.7506/spkx1002-6630-201523008
|
[26] |
ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions: Forces contributing to stability[J]. Biochemistry,1981,20:3096−3102. doi: 10.1021/bi00514a017
|
[27] |
JIANG J, ZHANG Z P, ZHAO J, et al. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests[J]. Food Chemistry,2018,268:334−341. doi: 10.1016/j.foodchem.2018.06.015
|
[28] |
CAO Y Y, XIONG Y L. Interaction of whey proteins with phenolic derivatives under neutral and acidic ph conditions[J]. Journal of Food Science,2017,82(2):409−419. doi: 10.1111/1750-3841.13607
|
[29] |
FARRELL H M, WICKHAM E D, UNRUH J J, et al. Secondary structural studies of bovine caseins: Temperature dependence of beta-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization[J]. Food Hydrocolloids,2001,15(4-6):341−354. doi: 10.1016/S0268-005X(01)00080-7
|
[30] |
GONG S X, YANG C Y, ZHANG J H, et al. Study on the interaction mechanism of purple potato anthocyanins with casein and whey protein[J]. Food Hydrocolloids,2021,111:106223. doi: 10.1016/j.foodhyd.2020.106223
|
[31] |
JAFARI S M, MCCLEMENTS D J. Nanotechnology approaches for increasing nutrient bioavailability[J]. Advances in Food and Nutrition Research,2017,81:1−30.
|