WANG Yan, LI Hongjia, CHENG Meijia, et al. AuNPs Enhanced Microwave Coupled Lipase Synthesis of Starch Oleate Ester[J]. Science and Technology of Food Industry, 2022, 43(23): 200−209. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020183.
Citation: WANG Yan, LI Hongjia, CHENG Meijia, et al. AuNPs Enhanced Microwave Coupled Lipase Synthesis of Starch Oleate Ester[J]. Science and Technology of Food Industry, 2022, 43(23): 200−209. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020183.

AuNPs Enhanced Microwave Coupled Lipase Synthesis of Starch Oleate Ester

More Information
  • Received Date: February 21, 2022
  • Available Online: October 08, 2022
  • The nano-gold immobilized lipase (CAL@AuNPs) was prepared to synthesize starch oleate ester efficiently by using pre-treated corn starch and oleic acid as raw materials. Optimisation of the preparation conditions of CAL@AuNPs was carried out using oleic acid conversion rate as an indicator. The substitution degree was used as an indicator to investigate the catalytic efficiency of free enzyme, commercial immobilised enzyme and nanogold immobilised lipase under microwave-assisted conditions. The experimental results showed that the immobilized lipase with the strongest catalytic activity could be obtained by using AuNPs of 14 nm as carrier at 40 ℃ for 6 h. The starch oleate ester with the highest substitution degree of 0.0259 could be prepared by using CAL@AuNPs as catalyst under the condition of 400 W, 35 ℃ for 40 min. Compared with free enzyme, and commercial immobilized enzyme , the CAL@AuNPs could shorten reaction time and improve the degree of substitution.
  • [1]
    MASINA N, CHOONARA Y E, KUMAR P, et al. A review of the chemical modification techniques of starch[J]. Carbohydrate Polymers,2016,157:1−11.
    [2]
    OTACHE M A, DURU U R, ACHUGASIM O, et al. Advances in the modification of starch via esterification for enhanced properties[J]. Journal of Polymers and the Environment,2021,29(5):1365−1379. doi: 10.1007/s10924-020-02006-0
    [3]
    OLTRAMARI K, MADRONA G S, ANDRÉ MONGE NETO, et al. Citrate esterified cassava starch: Preparation, physicochemical characterisation, and application in dairy beverages[J]. Starch-Stärke,2017,69(11-12):1−26.
    [4]
    YAN H, LU Q. Physicochemical properties of starch-wheat germ oil complex and its effects on water distribution and hardness of noodles[J]. LWT,2020(135):1−7.
    [5]
    ASHOGBON A O. Dual modification of various starches: Synthesis, properties and applications[J]. Food Chemistry,2020,342(11):1−38.
    [6]
    AMARAWEERA S M, GUNATHILAKE C, GUNAWARDENE O, et al. Development of starch-based materials using current modification techniques and their applications: A review[J]. Molecules (Basel, Switzerland),2021,26(22):6880. doi: 10.3390/molecules26226880
    [7]
    聂卉, 闵玉涛, 李玉玲, 等. 阿魏酸淀粉酯制备与表征及其对馒头预发酵冷冻面团物化性质的影响研究[J]. 中国食品添加剂,2021,32(11):123−128. [NIE H, MIN Y T, LI L Y, et al. Effect of starch ferulate on physicochemical properties of prefermented frozen dough and steamed bread[J]. China Food Additives,2021,32(11):123−128. doi: 10.19804/j.issn1006-2513.2021.11.017
    [8]
    ZHANG K, CHENG F, ZHANG K, et al. Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization[J]. European Polymer Journal,2019,119:136−147. doi: 10.1016/j.eurpolymj.2019.07.021
    [9]
    WINKLER H, VORWERG W, WETZEL H. Synthesis and properties of fatty acid starch esters[J]. Carbohydr Polym,2013,98(1):208−216. doi: 10.1016/j.carbpol.2013.05.086
    [10]
    SN A, RV A, AD B, et al. Ultrasound-assisted enzymatic synthesis of xylitol fatty acid esters in solvent-free conditions[J]. Ultrasonics Sonochemistry,2021,7(75):1−8.
    [11]
    ALLANA C N, GOMES Q C, LÚCIO C M, et al. Enzymatic kinetics of cetyl palmitate synthesis in a solvent-free system[J]. Biochemical Engineering Journal,2018,137:116−124. doi: 10.1016/j.bej.2018.05.021
    [12]
    HORCHANI H, CHAÂBOUNI M, GARGOURI Y, et al. Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: Optimization by response surface methodology[J]. Carbohydrate Polymers,2010,79(2):466−474. doi: 10.1016/j.carbpol.2009.09.003
    [13]
    王艳, 高鹏, 辛嘉英, 等. 纳米金辅助微波耦合脂肪酶催化阿魏酸淀粉酯的合成[J]. 食品研究与开发,2018,39(24):1−6. [WANG Y, GAO P, XING J Y, et al. Gold nanoparticles assisted microwave coupling lipase catalyzed synthesis of ferulic acid starch ester[J]. Food Research and Development,2018,39(24):1−6. doi: 10.3969/j.issn.1005-6521.2018.24.001
    [14]
    石佳. 微波辅助脂肪酶催化合成油酸淀粉脂的研究[D]. 哈尔滨: 哈尔滨商业大学, 2014.

    SHI J. Study on lipase-catalyzed esterification of starch using oleic acid under microwave[D]. Harbin: Harbin University of Commerce, 2014.
    [15]
    王艳, 赵宁, 王悦, 等. Mb耦合脂肪酶生物传感器差分脉冲伏安法对Cu~(2+)的检测[J/OL]. 食品科学, 1−12 [2022-04-19]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210913.1057.020.html

    WANG Y, ZHAO N, WANG Y, et al. Detection of Cu2+ by mb-coupled lipase biosensor with differential pulse voltammetry[J/OL]. Food Science: 1−12 [2022-04-19]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210913.1057.020.html
    [16]
    王艳. 中长链脂肪酸淀粉酯的酶法合成及其性质研究[D]. 哈尔滨: 哈尔滨商业大学, 2013.

    WANG Y. Study on enzymatic synthesis and properties of middle long chain fatty acid starch ester[D]. Harbin: Harbin University of Commerce, 2013.
    [17]
    王艳, 辛嘉英, 石佳, 等. 微波辅助酶促月桂酸淀粉酯的合成[J]. 分子催化,2014,28(1):67−74. [WANG Y, XIN J Y, SHI J, et al. Lipase-catalyzed esterification of starch using lauric acid under microwave[J]. Journal of Molecular Catalysis (China),2014,28(1):67−74. doi: 10.16084/j.cnki.issn1001-3555.2014.01.010
    [18]
    CABELLO G, DAVOGLIO G A, LUIS G. The role of small nanoparticles on the formation of hot spots under microwave-assisted hydrothermal heating[J]. Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2018,57(12):7252−7258.
    [19]
    张宏迪. 纳米金杂化脂肪酶催化拆分反应研究[D]. 哈尔滨: 哈尔滨商业大学, 2020.

    ZHANG H D. Study on the lipase-gold nanoparticles hybridase-catalyzed resolution reaction[D]. Harbin: Harbin University of Commerce, 2020.
    [20]
    王致禹, 陈晓倩, 孟庆凤, 等. 有机溶剂和混合油脂对脂肪酶活性恢复的影响[J]. 中国食品学报,2021,21(2):55−62. [WANG Z Y, CHEN X Q, MENG Q F, et al. Effect of organic solvents and mixed oils on the recovery of lipase avity[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(2):55−62. doi: 10.16429/j.1009-7848.2021.02.007
    [21]
    敖敦格日乐, 杨体强, 包斯琴高娃, 等. 电场对脂肪酶二级结构及其活性的影响[J]. 食品与生物技术学报,2015,34(12):1256−1261. [AO D G R L, YANG T Q, BAO S Q G W, et al. Study on the effect of electric field on the secondary structure and activity of lipase[J]. Journal of Food Science and Biotechnology,2015,34(12):1256−1261. doi: 10.3969/j.issn.1673-1689.2015.12.004
    [22]
    UPPENBERG J, HANSEN M T, PATKAR S, et al. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica[J]. Structure,1994,2(4):293−308. doi: 10.1016/S0969-2126(00)00031-9
    [23]
    LUKASIEWICZ M, KOWALSKI S. Low power microwave-assisted enzymatic esterification of starch[J]. Starch Stä rke,2011,64(3):188−197.
    [24]
    REJASSE B, BESSONEN T, LEGOY M D, et al. Influence of microwave radiation on free Candida antarctica lipase B activity and stability[J]. Organic & Biomolecular Chemistry,2006,4(19):3703−3707.
    [25]
    SRI KAJA B, LUMOR S, BESONG S, et al. Investigating enzyme activity of immobilizedCandida rugosa lipase[J]. Journal of Food Quality,2018,4(19):1−9.
    [26]
    孙纯锐. 硬脂酸淀粉酯的制备及其性质研究[D]. 济南: 齐鲁工业大学, 2016.

    SUN C Y. The study of preparation and roperties of starch stearate[D]. Jinan: Qilu University of Technology, 2016.
    [27]
    高鹏. 好食脉孢菌发酵麸皮制备游离阿魏酸及其改性研究[D]. 哈尔滨: 哈尔滨商业大学, 2020.

    GAO P. Study on the preparation and modification of free ferulic acid from fermentation bran of neurospora fastidious[D]. Harbin: Harbin University of Commerce, 2020.
    [28]
    金子. 毕赤酵母细胞展示的CALB脂肪酶的表征及非水相催化特性研究[D]. 广州: 华南理工大学, 2013.

    JIN Z. Characterization and catalytic properties of Candida antarctica lipase B- displaying Pichia pastoris cells in non-aqueous phase[D]. Guangzhou: South China University of Technology, 2013.
    [29]
    KAPUSNIAK J, SIEMION P. Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. linoleic acid[J]. Journal of Food Engineering,2007,78(1):323−332. doi: 10.1016/j.jfoodeng.2005.09.028
  • Cited by

    Periodical cited type(10)

    1. 舒丽枝,时苗苗,张牧焓,卞欢,徐为民,王道营. 卟啉类化合物和游离铁对鸡胸肉肌原纤维蛋白理化特性的影响. 江苏农业学报. 2024(10): 1952-1961 .
    2. 王晓芸,高霞,尤娟,尹涛,刘茹. 超声预处理对鲜湿鱼粉品质的影响及其作用机制. 食品科学. 2024(23): 213-220 .
    3. 韩馨蕊,李颖,刘苗苗,范鑫,冯莉,曹云刚. 安石榴苷与焦磷酸钠对肌原纤维蛋白氧化稳定性及凝胶性能的影响. 食品科学. 2022(08): 15-21 .
    4. 莫玲,香庆文,李晶晶,叶玉萍,赵超超. 孕哺期摄入氧化乳蛋白对子代小鼠机体氧化还原状态的影响. 食品科学技术学报. 2021(03): 122-128 .
    5. 梁恽红,卢涵,张香美. 蛋白二、三级结构对鱼糜凝胶质构和持水力的影响及其测定方法研究进展. 东北农业大学学报. 2021(10): 87-96 .
    6. 谢晨,熊泽语,李慧,金素莱曼,陈百科,包海蓉. 金针菇多糖对三文鱼片冻藏期间品质的影响. 食品与发酵工业. 2021(22): 178-183 .
    7. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    8. 冯程,Manonose Tariro Upenyu,李志豪,王萍,余雄伟,付琴利,李述刚. 丙烯醛对籽瓜种仁蛋白质结构及凝胶特性影响研究. 食品科技. 2019(09): 66-71 .
    9. 刁小琴,关海宁,李杨,刘丽美. 高压均质对肌原纤维蛋白乳化特性及结构的影响. 食品与发酵工业. 2019(18): 107-112 .
    10. 郭兆斌,马纪兵,张丽,陈骋,陈立业,刘勇,韩玲,余群力. 传统风干牦牛肉加工过程中肌原纤维蛋白氧化对氨基酸的影响. 食品与发酵工业. 2019(22): 202-207+212 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (140) PDF downloads (6) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return