ZHU Qiaoling, ZOU Yuxiao, LIAO Sentai, et al. Preparation and Structure Characterization of Ramulus mori Oligosaccharides Microcapsules with Antibacterial Activity[J]. Science and Technology of Food Industry, 2022, 43(20): 244−251. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020138.
Citation: ZHU Qiaoling, ZOU Yuxiao, LIAO Sentai, et al. Preparation and Structure Characterization of Ramulus mori Oligosaccharides Microcapsules with Antibacterial Activity[J]. Science and Technology of Food Industry, 2022, 43(20): 244−251. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020138.

Preparation and Structure Characterization of Ramulus mori Oligosaccharides Microcapsules with Antibacterial Activity

More Information
  • Received Date: February 17, 2022
  • Available Online: July 28, 2022
  • In order to reduce the hygroscopicity of Ramulus mori oligosaccharides, improve its stability and broaden the scope of application in product development, microcapsules of Ramulus mori oligosaccharides with good stability and inhibitory against Streptococcus mutans were prepared by spray drying using maltodextrin and whey protein isolate as wall materials. The antibacterial rate, hygroscopicity, molecular structure, microscopic morphology, thermal stability and storage stability of microcapsules were comprehensively evaluated. The results showed that the microcapsules had high antibacterial rate (61.31%±3.34%), low hygroscopicity (12.31%±1.47%) and small particle size (6.58±1.76 μm) when prepared by maltodextrin/whey protein isolate ratio 2:1 and the core/wall ratio 1:2. Scanning electron microscopy showed that the microcapsules had complete particle morphology and smooth surface structure. FITR showed that the microcapsules were formed by the electrostatic interaction between maltodextrin and whey protein, and the oligosaccharides were embedded into the microcapsules. X-ray diffraction analysis proved that the crystalline structure of Ramulus mori oligosaccharides microcapsules had been changed. The glass transition temperature of the microcapsules was 96.10 ℃, which was higher than the general storage temperature. What's more, the stability of Ramulus mori oligosaccharides was significantly improved at the temperature of 40.0, 60.0 ℃, and the humidity of RH 75.0%, RH 92.5% when embedded into the microcapsules. This research was expected to provide a theoretical basis for Ramulus mori oligosaccharides as functional ingredients.
  • [1]
    WEN P, HU T, LINHARDT R J, et al. Mulberry: A review of bioactive compounds and advanced processing technology[J]. Trends in Food Science & Technology,2019,83:138−158.
    [2]
    冯馨慧, 刘志明, 王海英. 桑枝活性成分的提取及其抑菌和抗氧化作用[J]. 江苏农业科学,2020,48(7):217−221. [FENG X H, LIU Z M, WANG H Y. Extraction of active components from mulberry branches and their antibacterial and antioxidant activities[J]. Jiangsu Agricultural Sciences,2020,48(7):217−221.
    [3]
    QIU F, HE T, ZHANG Y. The isolation and the characterization of two polysaccharides from the branch bark of mulberry (Morus alba L.)[J]. Archives of Pharmacal Research,2016,39(7):887−896. doi: 10.1007/s12272-016-0742-8
    [4]
    LI E, YANG S, ZOU Y, et al. Purification, characterization, prebiotic preparations and antioxidant activity of oligosaccharides from mulberries[J]. Molecules,2019,24(12):2329. doi: 10.3390/molecules24122329
    [5]
    QIN Y, XIE J, XUE B, et al. Effect of acid and oxidative degradation on the structural, rheological, and physiological properties of oat β-glucan[J]. Food Hydrocolloids,2021,112:106284. doi: 10.1016/j.foodhyd.2020.106284
    [6]
    吴婷, 闫茂华, 张娅, 等. 葫芦巴多糖酸解和酶解产物抗氧化及抗菌活性的比较研究[J]. 食品科学,2007(11):509−512. [WU T, YAN M, ZHANG Y, et al. Antioxidant and antimicrobial activity of acidolysis and enzymolysis products of fenugreek polysaccharides[J]. Food Science,2007(11):509−512. doi: 10.3321/j.issn:1002-6630.2007.11.122
    [7]
    PITTS N B, ZERO D T, MARSH P D, et al. Dental caries[J]. Nat Rev Dis Primers,2017,3:17030. doi: 10.1038/nrdp.2017.30
    [8]
    朱巧玲, 廖森泰, 邹宇晓, 等. 响应面法优化桑枝低聚糖的制备工艺及抗氧化活性研究[J]. 食品研究与开发, 2022(10):85-94.

    ZHU Q L, LIAO S T, ZOU Y X, et al. Optimization of preparation process against Streptococcus mutans by response surface methodology and antioxidant activity for Ramulus mori oligosaccharides[J]. Food Research and Development, 2022(10): 85-94.
    [9]
    ZHANG Y, TAN C, ABBAS S, et al. Modified SPI improves the emulsion properties and oxidative stability of fish oil microcapsules[J]. Food Hydrocolloids,2015,51:108−117. doi: 10.1016/j.foodhyd.2015.05.001
    [10]
    ĐORĐEVIĆ V, BALANČ B, BELŠČAK-CVITANOVIĆ A, et al. Trends in encapsulation technologies for delivery of food bioactive compounds[J]. Food Engineering Reviews,2015,7(4):452−490. doi: 10.1007/s12393-014-9106-7
    [11]
    TOLEDO-MADRID K, GALLARDO-VELÁZQUEZ T, OSORIO-REVILLA G. Microencapsulation of purple cactus pear fruit (Opuntia ficus indica) extract by the combined method W/O/W double emulsion-spray drying and conventional spray drying: A comparative dtudy[J]. Processes,2018,6(10):189. doi: 10.3390/pr6100189
    [12]
    RIBEIRO M L F F, ROOS Y H, RIBEIRO A P B, et al. Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules[J]. Food and Bioproducts Processing,2020,124:208−221. doi: 10.1016/j.fbp.2020.09.004
    [13]
    SHAO P, XUAN S, WU W, et al. Encapsulation efficiency and controlled release of Ganoderma lucidum polysaccharide microcapsules by spray drying using different combinations of wall materials[J]. Int J Biol Macromol,2019,125:962−969. doi: 10.1016/j.ijbiomac.2018.12.153
    [14]
    NIU B, FENG S, XUAN S, et al. Moisture and caking resistant Tremella fuciformis polysaccharides microcapsules with hypoglycemic activity[J]. Food Research International,2021,146:110420. doi: 10.1016/j.foodres.2021.110420
    [15]
    吕学姣, 王思婷, 宋志远, 等. 菲律宾蛤仔蒸煮液多糖回收工艺及微胶囊化[J]. 食品安全质量检测学报,2018,9(22):5936−5942. [LÜ X J, WANG S T, SONG Z Y, et al. Recovery process of polysaccharide from the cooking liquid of Ruditapes philippinarum and the microencapsulation[J]. Journal of Food Safety and Quality,2018,9(22):5936−5942. doi: 10.3969/j.issn.2095-0381.2018.22.024
    [16]
    袁清霞, 朱苗, 李恒, 等. 仙人掌多糖微胶囊化研究[J]. 食品工业科技,2014,35(7):202−206. [YUAN Q X, ZHU M, LI H, et al. Study on microencapsulation of Opuntia dillenii Haw. polysaccharides[J]. Science and Technology of Food Industry,2014,35(7):202−206.
    [17]
    YU W, CHEN H, XIANG Z, et al. Preparation of polysaccharides from Ramulus mori, and their antioxidant, anti-inflammatory and antibacterial activities[J]. Molecules,2019,24(5):856. doi: 10.3390/molecules24050856
    [18]
    SUBTIL S F, ROCHA-SELMI G A, THOMAZINI M, et al. Effect of spray drying on the sensory and physical properties of hydrolysed casein using gum arabic as the carrier[J]. Journal of Food Science and Technology,2014,51(9):2014−2021. doi: 10.1007/s13197-012-0722-z
    [19]
    YOPLAC I, VARGAS L, ROBERT P, et al. Characterization and antimicrobial activity of microencapsulated citral with dextrin by spray drying[J]. Heliyon,2021,7(4):e6737.
    [20]
    CHEN W, LIANG G, LI X, et al. Impact of soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability[J]. Colloids Surf B Biointerfaces,2019,177:550−558. doi: 10.1016/j.colsurfb.2019.02.020
    [21]
    LI Z, WANG L, CHEN Z, et al. Impact of binding interaction characteristics on physicochemical, structural, and rheological properties of waxy rice flour[J]. Food Chem,2018,266:551−556. doi: 10.1016/j.foodchem.2018.05.010
    [22]
    杨诗沅, 邹宇晓, 黎尔纳, 等. 桑枝多糖与桑枝低聚糖的流变学特性[J]. 食品研究与开发,2021,42(8):1−6. [YANG S Y, ZOU Y X, LI E N, et al. Rheological properties of Ramulus mori polysaccharides and Ramulus mori oligosaccharides[J]. Food Research and Development,2021,42(8):1−6.
    [23]
    鲍杰. 微胶囊化对玫瑰花渣色素理化性质及稳定性的影响研究[D]. 北京: 北京林业大学, 2019.

    BAO J. Studies on the effects of microencapsulation on the physicochemical properties and stability of rose residue pigment[D]. Beijing: Beijing Froestry University, 2019.
    [24]
    谭睿, 申瑾, 董文江, 等. 复合凝聚法制备绿咖啡油微胶囊及其性能[J]. 食品科学,2020,41(23):144−152. [TAN R, SHEN J, DONG W J, et al. Preparation of green coffee oil microcapsules by complex coacervation method and its physicochemical properties[J]. Food Science,2020,41(23):144−152. doi: 10.7506/spkx1002-6630-20191128-273
    [25]
    KARRAR E, MAHDI A A, SHETH S, et al. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method[J]. Int J Biol Macromol,2021,171:208−216. doi: 10.1016/j.ijbiomac.2020.12.045
    [26]
    LEKSHMI R G K, TEJPAL C S, ANAS K K, et al. Binary blend of maltodextrin and whey protein outperforms gum arabic as superior wall material for squalene encapsulation[J]. Food Hydrocolloids,2021,121(4):106976.
    [27]
    黄晓梅, 韦翠兰, 侯俊杰, 等. 大豆蛋白酶解产物的微胶囊化及理化性质表征[J]. 现代食品科技,2020,36(7):202−208. [HUANG X M, WET C L, HOU J J, et al. Microencapsulation and characterization of soybean protein hydrolysates[J]. Modern Food Science and Technology,2020,36(7):202−208.
    [28]
    HOU X, XUE Z, XIA Y, et al. Effect of SiO2 nanoparticle on the physical and chemical properties of eco-friendly agar/sodium alginate nanocomposite film[J]. International Journal of Biological Macromolecules,2019,125:1289−1298. doi: 10.1016/j.ijbiomac.2018.09.109
    [29]
    QINGSHENG Z, BEITAO D, JINJIN C, et al. Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry (Lycium barbarum) polysaccharide[J]. Carbohydrate Polymers,2015,127:176−181. doi: 10.1016/j.carbpol.2015.03.041
    [30]
    何畅, 李达, 高岩松, 等. 分蘖洋葱黄酮微胶囊的制备及其品质[J]. 食品工业,2021,42(1):74−80. [HE C, LI D, GAO Y S, et al. The preparation and quality of flavonoids microcapsules from tillering onion[J]. Food Industry,2021,42(1):74−80.
    [31]
    孙雪, 张蕊, 范方宇, 等. 复凝聚法制备西番莲果皮花色苷微胶囊及其性质分析[J]. 食品工业科技,2021,42(17):187−193. [SUN X, ZHANG R, FAN F Y, et al. Preparation and properties of anthocyanin microcapsules from Passiflora edulis rind by complex coacervation[J]. Science and Technology of Food Industry,2021,42(17):187−193.
    [32]
    MAHDI A A, MOHAMMED J K, AL-ANSI W, et al. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying[J]. Int J Biol Macromol,2020,152:1125−1134. doi: 10.1016/j.ijbiomac.2019.10.201
    [33]
    薛露, 彭珍, 关倩倩, 等. 不同壁材对β-胡萝卜素微胶囊性质的影响[J]. 食品研究与开发,2020,41(14):47−54. [XUE L, PENG Z, GUAN Q Q, et al. Effects of different wall materials on the characteration of β-carotene microcapsulation[J]. Food Research and Development,2020,41(14):47−54.
    [34]
    孙亚利, 周文美, 黄永光, 等. 以聚合乳清蛋白为壁材的苦荞黄酮微胶囊化及其品质分析[J]. 食品科学,2020,41(12):259−266. [SUN Y L, ZHOU W M, HUANG Y G, et al. Microencapsulation and quality analysis of tartary buckwheat flavonoids using polymerized whey protein as wall material[J]. Food Science,2020,41(12):259−266. doi: 10.7506/spkx1002-6630-20190624-291
    [35]
    廖霞, 杨小兰, 李瑶, 等. 槲皮素微胶囊的贮藏稳定性及抗氧化活性[J]. 食品科学,2017,38(1):60−66. [LIAO X, YANG X L, LI Y, et al. Storage stability and antioxidant activity of quercetin microcapsules[J]. Food Science,2017,38(1):60−66. doi: 10.7506/spkx1002-6630-201701010
    [36]
    FANG Z, BHANDARI B. Encapsulation of polyphenols–a review[J]. Trends in Food Science & Technology,2010,21(10):510−523.
    [37]
    田媛. 喷雾干燥姜粉的加工工艺及速溶姜糖粉的研发[D]. 青岛: 山东农业大学, 2020.

    TIAN Y. Processing technology of spray-dried ginger powder and development of ginger sugar power[D]. Qingdao: Shandong Agricultural University, 2020.
    [38]
    张亚杰, 徐金帅, 邹波, 等. 柚皮苷/柠檬苦素微胶囊的制备、结构分析及特性研究[J]. 食品工业科技,2021,42(18):209−217. [ZHANG Y J, XU J S, ZOU B, et al. Preparation, structural analysis and properties of naringin/limonin microcapsules[J]. Science and Technology of Food industry,2021,42(18):209−217.
    [39]
    舒予. 中药提取物防潮技术及其机理初步研究[D]. 成都: 成都中医药大学, 2014.

    SHU Y. Preliminary study on extracts from Chinese herbs moisture proof technology and its mechanism[D]. Chengdu: Chengdu University of TCM, 2014.
  • Cited by

    Periodical cited type(6)

    1. 郭玉龙,邵高耸,史轻舟,许焯,胡定煜,符式瑜. 纳米材料在食品检验鉴定中的应用研究进展. 山东化工. 2024(01): 91-94 .
    2. 左海根,黄芷诺,李毛英,袁小珍,杜永琴,刘小玉,陈雨. 核酸适配体在雌二醇分析中的研究进展. 理化检验-化学分册. 2023(07): 862-868 .
    3. 唐春花,杨洁,卢晓玲,陈美仑,魏铮,余鹏,赵佳. 甾体激素核酸适配体的筛选与应用. 生物化学与生物物理进展. 2023(09): 2146-2161 .
    4. 于开宁,王润忠,刘丹丹. 水环境中新污染物快速检测技术研究进展. 岩矿测试. 2023(06): 1063-1077 .
    5. 常嵘,叶巧燕,刘慧敏,郝欣雨,郭洪侠,郑楠. 牛奶中激素检测方法的研究进展. 食品安全质量检测学报. 2022(16): 5235-5243 .
    6. 史学丽,高辉,周永红,赵伟. 一种基于适配体传感器的17β-雌二醇定量分析方法. 河北工业科技. 2021(05): 431-437 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (172) PDF downloads (15) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return