ZHANG Mishuai, ZOU Yujia, LIU Ruming. Optimization of Activated Carbon Decolorization Process of Water- and Alkali-Extracted Polysaccharides from Cordyceps taii[J]. Science and Technology of Food Industry, 2022, 43(24): 216−224. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020124.
Citation: ZHANG Mishuai, ZOU Yujia, LIU Ruming. Optimization of Activated Carbon Decolorization Process of Water- and Alkali-Extracted Polysaccharides from Cordyceps taii[J]. Science and Technology of Food Industry, 2022, 43(24): 216−224. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020124.

Optimization of Activated Carbon Decolorization Process of Water- and Alkali-Extracted Polysaccharides from Cordyceps taii

More Information
  • Received Date: February 15, 2022
  • Available Online: October 10, 2022
  • Objective: Cordyceps taii is a kind of characteristic medical fungus resource in Guizhou. In this study, the decolorization process of activated carbon for water- and alkali-extracted polysaccharides from C. taii was explored. Methods: Based on the single factor experiment of active carbon dosage, decolorization time, decolorization temperature and decolorization pH, the optimum decolorization processes of two kinds of polysaccharide with active carbon were optimized by four factors on three levels orthogonal experiment. Results: Optimal decolorization technology of water- and alkali-extracted polysaccharides were as follows: Active carbon dose were 1.5 and 2 g/100 mL, decolorization time were 10 and 30 min, decolorization temperature were at 50 and 70 °C, decolorization pH were at 4 and 8, respectively. Under the optimal conditions, the decolorization rate and the retention rate of water-extracted polysaccharides were 92.12%±0.45% and 73.46%±0.33%, and the decolorization rate and the retention rate of alkali-extracted polysaccharides were 75.67%±0.66% and 56.72%±0.47%, respectively. Conclusion: Active carbon adsorption had significant decolorization effect on water- and alkali-extracted polysaccharides from C. taii, and the retention rates of polysaccharides were both high. The decolorization process was simple, efficient, low cost and suitable for industrial application.
  • [1]
    梁宗琦. 中国真菌志[M]. 北京: 科学出版社, 2007

    LIANG Z Q. Chinese flora[M]. Beijing: Science Press, 2007.
    [2]
    XIAO J H, XIAO D M, CHEN D X, et al. Polysaccharides from the medicinal mushroom Cordyceps taii show antioxidant and immunoenhancing activities in a D-galactose-induced aging mouse model[J]. Evidence-Based Complementary and Alternative Medicine,2012:273435.
    [3]
    程萍, 雷艳霞, 刘杰麟. 戴氏虫草多糖诱导肿瘤细胞分化的研究[J]. 贵阳医学院学报,2015,40(8):806−809. [CHENG P, LEI Y X, LIU J L. Study of differentiation of tumor cells induced by Cordyceps taii polysaccharide[J]. Journal of Guiyang Medical College,2015,40(8):806−809.
    [4]
    刘杰麟, 于敏, 查筑红. 戴氏虫草菌丝体水提物对放射损伤小鼠体液免疫的作用[J]. 生命科学研究,2000,4(4):362−366. [LIU J L, YU M, CHA Z H. Protection of water-extract of Cordyceps taii mycelia on humoral immune function in radiated mice[J]. Life Science Research,2000,4(4):362−366. doi: 10.3969/j.issn.1007-7847.2000.04.014
    [5]
    彭克军, 刘杰麟. 戴氏虫草多糖抗突变活性的研究[J]. 中药材,2008,31(1):86−88. [PENG K J, LIU J L. Study on the antimutagenicity of Cordyceps taii polysaccharide[J]. Journal of Chinese Medicinal Materials,2008,31(1):86−88. doi: 10.3321/j.issn:1001-4454.2008.01.032
    [6]
    王金彬, 章能胜, 王小董, 等. 戴氏虫草中具清除自由基活性的物质分析[J]. 安徽农业大学学报,2010,37(2):234−237. [WANG J B, ZHANG N S, WANG X D, et al. Analysis of radical scavenging active constituent in Cordyceps taii[J]. Journal of Anhui Agricultural University,2010,37(2):234−237.
    [7]
    LIU R M, DAI R, LUO Y, et al. Glucose-lowering and hypolipidemic activities of polysaccharides from Cordyceps taii in streptozotocin-induced diabetic mice[J]. BMC Complementary and Alternative Medicine,2019,19:230. doi: 10.1186/s12906-019-2646-x
    [8]
    李月, 王昀, 左绍远. 植物多糖脱色工艺研究进展[J]. 现代化工,2018,38(10):31−33,35. [LI Y, WANG Y, ZUO S Y. A review on decolorization technology of plant-based polysaccharides[J]. Modern Chemical Industry,2018,38(10):31−33,35.
    [9]
    肖代敏, 吕纯莉, 曹喻, 等. 大孔吸附树脂分离纯化戴氏虫草多糖工艺研究[J]. 遵义医学院学报,2015,38(5):536−540. [XIAO D M, LÜ C L, CAO Y, et al. Studies on the separation and purification of Metarhizium taii polysaccharide by macroporous adsorption resin[J]. Journal of Zunyi Medical University,2015,38(5):536−540.
    [10]
    文淅菊, 沈承菁, 孔圆圆, 等. 植物多糖脱色脱蛋白工艺及药理作用研究进展[J]. 化工科技,2021,29(6):67−71. [WEN Z J, SHEN C J, KONG Y Y, et al. Research on the decolorization and deproteinization technology of plant polysaccharide and its pharmacological effects[J]. Science & Technology in Chemical Industry,2021,29(6):67−71. doi: 10.3969/j.issn.1008-0511.2021.06.013
    [11]
    WENG V, BRAZINHA C, COELHOSO I M, et al. Decolorization of a corn fiber arabinoxylan extract and formulation of biodegradable films for food packaging[J]. Membranes,2021,11(5):321. doi: 10.3390/membranes11050321
    [12]
    LIANG L, LIU G, YU G, et al. Simultaneous decoloration and purification of crude oligosaccharides from pumpkin (Cucurbita moschata Duch) by macroporous adsorbent resin[J]. Food Chemistry,2019,277:744−752. doi: 10.1016/j.foodchem.2018.10.138
    [13]
    HUANG R, ZHANG Q, YAO H, et al. Ion-exchange resins for efficient removal of colorants in Bis (hydroxyethyl) terephthalate[J]. ACS Omega,2021,6(18):12351−12360. doi: 10.1021/acsomega.1c01477
    [14]
    HASSAN M M, CARR C M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents[J]. Chemosphere,2018,209:201−219. doi: 10.1016/j.chemosphere.2018.06.043
    [15]
    SHAO L, SUN Y, LIANG J, et al. Decolorization affects the structural characteristics and antioxidant activity of polysaccharides from Thesium chinense Turcz: Comparison of activated carbon and hydrogen peroxide decolorization[J]. International Journal of Biological Macromolecules,2020,155:1084−1091. doi: 10.1016/j.ijbiomac.2019.11.074
    [16]
    WANG X, CHENG H, YE G, et al. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review[J]. Chemosphere, 2022, 287(Pt 2): 131995.
    [17]
    王辉, 句荣辉, 王丽, 等. 活性炭法对柿子粉多糖色素脱除的研究[J]. 农产品加工,2020,8:1−4. [WANG H, JU R H, WANG L, et al. Study on the decolorizing of polysaccharide from persimmon by activated carbon[J]. Farm Products Processing,2020,8:1−4.
    [18]
    GAYATHIRI M, PULINGAM T, LEE K T, et al. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism[J]. Chemosphere,2022,294:133764. doi: 10.1016/j.chemosphere.2022.133764
    [19]
    亓希武, 房海灵, 陈泽群, 等. 桃胶多糖脱蛋白工艺研究[J]. 现代食品,2021(8):104−107. [QI X W, FANG H L, CHEN Z Q, et al. Study on deproteinization process of polysaccharide from peach gum[J]. Modern Food,2021(8):104−107.
    [20]
    徐丹鸿, 冯晓阳. 酸浆果多糖活性炭脱色工艺研究[J]. 现代农业科技,2017(15):248−249,257. [XU D H, FENG X Y. Study on decoloring process of polysaccharide from Physalis alkekengi L. var. franchetii (Mast.) Makino with active carbon[J]. Modern Agricultural Science and Technology,2017(15):248−249,257. doi: 10.3969/j.issn.1007-5739.2017.04.138
    [21]
    张达成, 秦允荣. 银耳多糖的活性炭脱色工艺研究[J]. 广东化工,2019,46(16):40−42. [ZHANG D C, QIN Y R. Study on decolorization process of activated carbon from Tremella polysaccharide[J]. Guangdong Chemical Industry,2019,46(16):40−42. doi: 10.3969/j.issn.1007-1865.2019.16.018
    [22]
    项碧华, 李小林. 可溶性大豆多糖活性炭脱色工艺研究[J]. 饮料工业,2017,20(2):12−15. [XIANG B H, LI X L. Study on decoloring technology of soybean soluble polysaccharide with activated carbon[J]. The Beverage Industry,2017,20(2):12−15. doi: 10.3969/j.issn.1007-7871.2017.02.004
    [23]
    车向前, 常明泉, 陈林, 等. 正交试验法优选白及多糖活性炭脱色工艺[J]. 中国药师,2017,20(8):1370−1373. [CHE X Q, CHANG M Q, CHEN L, et al. Optimization of activated carbon decolorization technology for Bletilla striata polysaccharide by orthogonal test[J]. China Pharmacist,2017,20(8):1370−1373. doi: 10.3969/j.issn.1008-049X.2017.08.010
    [24]
    吴君, 刘波, 梁伟玲, 等. 大孔树脂对蛹虫草粗多糖的脱色工艺研究[J]. 广州中医药大学学报,2015,32(4):739−744. [WU J, LIU B, LIANG W, et al. Study on decoloration process for crude polysaccharides from Cordyceps militaris Link. By microporous resin[J]. Journal of Guangzhou University of Traditional Chinese Medicine,2015,32(4):739−744.
    [25]
    赵孝先, 高玲, 杨文, 等. 响应面法优化香菇多糖脱色工艺研究[J]. 食品研究与开发,2016,37(11):99−103. [ZHAO X X, GAO L, YANG W, et al. Optimization of decolorization of lentinan using response surface methodology[J]. Food Research and Development,2016,37(11):99−103. doi: 10.3969/j.issn.1005-6521.2016.11.024
    [26]
    罗春萍, 陆友利, 王星星. 苯酚-硫酸法快速测定多糖方法的优化[J]. 化工管理,2021,3:90−91,94. [LUO C P, LU Y L, WANG X X. Optimization of phenol sulfuric acid method for rapid determination of polysaccharide[J]. Chemical Enterprise Management,2021,3:90−91,94.
    [27]
    于淼, 谢春阳, 姚成龙, 等. 黑果腺肋花楸果粗多糖提取及脱色工艺[J]. 粮食与油脂,2020,33(10):113−116. [YU M, XIE C Y, YAO C L, et al. Extraction and decolorization process of crude polysaccharide from Black chokeberry[J]. Cereals & Oils,2020,33(10):113−116. doi: 10.3969/j.issn.1008-9578.2020.10.029
    [28]
    许英伟, 肖小年, 刘剑青, 等. 响应面法优化内部沸腾法提取生米藠头多糖[J]. 南昌大学学报 ( 理科版 ) ,2012,36(5):449−452. [XU Y W, XIAO X N, LIU J Q, et al. Optimization of inner ebullition of polysaccharide from Sheng Mi Allium chinense by response surface methodology[J]. Journal of Nanchang University (Natural Science),2012,36(5):449−452.
    [29]
    胡香玉. 多糖提取纯化领域专利技术综述[J]. 科技创新与应用,2016,18:76. [HU X Y. Summary of patented technologies in the field of polysaccharide extraction and purification[J]. Technology Innovation and Application,2016,18:76.
    [30]
    郑霖华, 吴启赐, 陈巧玲, 等. 细梗香草皂苷活性炭脱色工艺及抑菌活性研究[J]. 中国食品添加剂,2021,32(11):67−72. [ZHENG L H, WU Q C, CHEN Q L, et al. Decolorization optimization of saponins from Lysimachia capillipes Hemsl by activated carbon and its antimicrobial activity[J]. China Food Additives,2021,32(11):67−72.
    [31]
    杨申明, 熊正军, 王振吉, 等. 响应面法优化地参多糖脱色工艺及其抗氧化活性研究[J]. 粮食与油脂,2022,35(1):111−115. [YANG S M, XIONG Z J, WANG Z J, et al. Optimization of decolorization technology of Lycopus lucidus Turcz. polysaccharides by response surface methodology and its antioxidant activity[J]. Cereals & Oils,2022,35(1):111−115. doi: 10.3969/j.issn.1008-9578.2022.01.025
    [32]
    吴光杰, 李玉萍, 李资玲, 等. 马齿蕨多糖的活性炭脱色工艺优选[J]. 中国实验方剂学杂志,2013,19(12):43−45. [WU G J, LI Y P, LI Z L, et al. Optimization of depigmenting technology for polysaccharides from Portulaca oleracea with activated carbon[J]. Chinese Journal of Experimental Traditional Medical Formulae,2013,19(12):43−45.
    [33]
    刘福岗, 冯素香, 张杰, 等. 白屈菜多糖果胶酶提取及脱色工艺的优化[J]. 中成药,2018,40(7):1622−1626. [LIU F G, FENG S X, ZHANG J, et al. Optimization of enzyme extraction and decolorization of Chelidonium majus L. polysaccharide[J]. Chinese Traditional Patent Medicine,2018,40(7):1622−1626. doi: 10.3969/j.issn.1001-1528.2018.07.039
    [34]
    付学鹏, 杨晓杰. 植物多糖脱色技术的研究[J]. 食品研究与开发,2007,28(11):166−169. [FU X P, YANG X J. Study on decolorization technology of plant polysaccharides[J]. Food Research and Development,2007,28(11):166−169. doi: 10.3969/j.issn.1005-6521.2007.11.051
  • Cited by

    Periodical cited type(6)

    1. 郑婷婷,吕建彪,龚婉莹,王礼中,张文杰,严亮. 白及叶多糖脱色脱蛋白质方法及其抗氧化活性研究. 粮食与油脂. 2024(03): 86-90+105 .
    2. 杨紫焰,李自霖,张翠香,黄丽金,陈贵元,李雪英. 响应面法优选穿心莲多糖大孔树脂脱色工艺及其抗氧化活性研究. 安徽农学通报. 2024(10): 89-95 .
    3. 潘金涛,沈晓岩,陈亮,武小芬,齐慧,刘安,魏东宁,邓明. 油茶壳低聚木糖水热处理液脱色条件优化. 湖南农业科学. 2024(11): 76-80+95 .
    4. 黄丽金,李自霖,陈贵元. 响应面法优化苦胆草多糖脱色工艺. 安徽农学通报. 2023(09): 157-160+170 .
    5. 黄丽金,陈贵元. 苦胆草多糖活性炭脱色工艺研究. 安徽农学通报. 2023(13): 32-36 .
    6. 李自霖,陈贵元. 中药多糖提取物脱色工艺研究进展. 安徽农学通报. 2023(13): 37-40 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (209) PDF downloads (23) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return