Citation: | SHI Jinghong. Dynamic Analysis of Bacterial Diversity during Fermentation of Red Pickled[J]. Science and Technology of Food Industry, 2022, 43(22): 173−180. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020095. |
[1] |
李文青, 卿泉, 唐清苗, 等. 发酵芥菜工艺及品质变化研究进展[J]. 中国酿造,2019,38(12):1−4. [LI Wenqing, QING Quan, TANG Qingmiao, et al. Research progress of technology and quality change of fermented mustard[J]. China Brewing,2019,38(12):1−4. doi: 10.11882/j.issn.0254-5071.2019.12.001
|
[2] |
MARIA L MARCO, DUSTIN HEENEY, SYLVIE BINDA, et al. Health benefits of fermented foods: Microbiota and beyond[J]. Current Opinion in Biotechnology,2017,44:94−102. doi: 10.1016/j.copbio.2016.11.010
|
[3] |
ZHANG C C, ZHANG J M, LIU D Q. Biochemical changes and microbial community dynamics during spontaneous fermentation of Zhacai, a traditional pickled mustard tuber from China[J]. International Journal of Food Microbiology,2021,347:109199. doi: 10.1016/j.ijfoodmicro.2021.109199
|
[4] |
LIANG H P, CHEN H Y, ZHANG W X, et al. Investigation on microbial diversity of industrial, Zhacai, Paocai during fermentation using high-throughput sequencing and their functional characterization[J]. LWT-Food Science and Technology,2018,91:460−466. doi: 10.1016/j.lwt.2018.01.088
|
[5] |
LIU D Q, CHUAN T. Bacterial community diversity of traditional fermented vegetables in China[J]. LWT-Food Science and Technology,2017,86:40−48. doi: 10.1016/j.lwt.2017.07.040
|
[6] |
吴晓红, 高生平, 蒋彩云, 等. 榨菜发酵过程中原核微生物群落结构及其理化因子的动态演替[J]. 食品与发酵工业,2021,47(1):27−34. [WU Xiaohong, GAO Shengping, JIANG Caiyun, et al. Dynamic succession of prokaryotic microbial com-munities and physicochemical properties during the fermentation of Zhacai[J]. Food and Fermentation Industries,2021,47(1):27−34. doi: 10.13995/j.cnki.11-1802/ts.025106
|
[7] |
吴进菊, 李宇昂, 王梓杭, 等. 襄阳大头菜发酵过程中细菌的多样性[J]. 食品科学,2020,41(4):112−117. [WU Jinju, LI Yu'ang, WANG Zihang, et al. Bacterial diversity of Xiangyang pickled kohlrabi during fermentation[J]. Food Science,2020,41(4):112−117. doi: 10.7506/spkx1002-6630-20190111-138
|
[8] |
NGUYEN D T L, KOENRAAD VAN HOORDE, MARGO CNOCKAERT, et al. A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam[J]. International Journal of Food Microbiology,2013,163(1):19−27. doi: 10.1016/j.ijfoodmicro.2013.01.024
|
[9] |
MAGOČ T, SALZBERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics,2011,27(21):2957−2963. doi: 10.1093/bioinformatics/btr507
|
[10] |
EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics,2010,26(19):2460−2461. doi: 10.1093/bioinformatics/btq461
|
[11] |
QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(Database issue): D590-596.
|
[12] |
COLE J R, WANG Q, CARDENAS E, et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis[J]. Nucleic Acids Research, 2009, 37(Database issue): D141−145.
|
[13] |
DE SANTIS T Z, HUGENHOLTZ P, LARSEN N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology,2006,72(7):5069−5072. doi: 10.1128/AEM.03006-05
|
[14] |
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Meth,2010,7(5):335−336. doi: 10.1038/nmeth.f.303
|
[15] |
I L M G, JESSE Z, J C, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology,2013,31(9):814−821. doi: 10.1038/nbt.2676
|
[16] |
CAO J L, YANG J X, HOU Q C, et al. Assessment of bacterial profiles in aged, home-made Sichuan paocai brine with varying titratable acidity by PacBio SMRT sequencing technology[J]. Food Control,2017,78:14−23. doi: 10.1016/j.foodcont.2017.02.006
|
[17] |
CHEN P, WU Z Y, ZHAO Y, et al. Cultivation-independent comprehensive investigations on bacterial communities in serofluid dish, a traditional Chinese fermented food[J]. Genom Data,2016,7:127−128. doi: 10.1016/j.gdata.2015.12.019
|
[18] |
LEE M, SONG J H, JUNG M Y, et al. Large-scale targeted metagenomics analysis of bacterial ecological changes in 88 kimchi samples during fermentation[J]. Food Microbiology,2017,66:173−183. doi: 10.1016/j.fm.2017.05.002
|
[19] |
LIU Z G, LI J Y, WEI B L, et al. Bacterial community and composition in Jiang-shui and Suan-cai revealed by high-throughput sequencing of 16S rRNA[J]. Int J Food Microbiol,2019,306(10):1−9.
|
[20] |
郝卓莉. 遂宁榨菜发酵过程中细菌群落多样性和基因功能预测分析[J]. 中国酿造,2021,40(5):59−64. [HAO Zhuoli. Bacterial diversity and predictive analysis of gene function during fermentation process of Zhacai in Suining region[J]. China Brewing,2021,40(5):59−64. doi: 10.11882/j.issn.0254-5071.2021.05.011
|
[21] |
刘长根. 我国传统发酵蔬菜微生物多样性比较[D]. 南昌: 南昌大学, 2019.
LIU Changgen. Comparison of microbial diversity of traditional fermented vegetables in China[D]. Nanchang: Nanchang University, 2019.
|
[22] |
马欢欢, 吕欣然, 白凤翎, 等. 传统中韩泡菜乳酸菌菌相分析与风味物质组成的比较[J]. 食品与发酵工业,2015,41(12):184−190. [MA Huanhuan, LÜ Xinran, BAI Feng-ling, et al. Comparison of flavor substances and analysis of lactic acid bacteria flora between Chinese paocai and Korean kimchi[J]. Food and Fermentation Industries,2015,41(12):184−190. doi: 10.13995/j.cnki.11-1802/ts.201512036
|
[23] |
杨柳, 高良锋, 沈明浩, 等. 朝鲜族辣白菜在自然发酵过程中菌群结构与主要呈味物质的相关性[J]. 食品与发酵工业,2021,47(17):61−68. [YANG Liu, GAO Liangfeng, SHEN Minghao, et al. Correlation between microbial community structure and main flavor components of Korean spicy cabbage during natural fermentation[J]. Food and Fermentation Industries,2021,47(17):61−68. doi: 10.13995/j.cnki.11-1802/ts.026299
|
[24] |
李巧玉, 方芳, 堵国成, 等. 魏斯氏菌在发酵食品中的应用[J]. 食品与发酵工业,2017,43(10):241−247. [LI Qiaoyu, FANG Fang, DU Guocheng, et al. The application of Weissella strains in fermented food[J]. Food and Fermentation Industries,2017,43(10):241−247. doi: 10.13995/j.cnki.11-1802/ts.014934
|
[25] |
JIANG Y, LIU K M, ZHANG H S, et al. Gluconic acid production from potato waste by Gluconobacter oxydans using sequential hydrolysis and fermentation[J]. ACS Sustainable Chemistry & Engineering,2017,5(7):6116−6123.
|
[26] |
HYE SEON SONG, TAE WOONG WHON, JUSEOK KIM, et al. Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation[J]. Food Chemistry,2020,318:126481. doi: 10.1016/j.foodchem.2020.126481
|
[27] |
LIU S N, HAN Y, ZHOU Z J. Lactic acid bacteria in traditional fermented Chinese foods[J]. Food Research International,2010,44(3):643−651.
|
[28] |
ZHANG J M, ZHANG C C, WU W C, et al. Correlation of the bacterial communities with umami components, and chemical characteristics in Zhejiang xuecai and fermented brine[J]. Food Research International,2021,140:109986. doi: 10.1016/j.foodres.2020.109986
|
[29] |
SEBASTIAN TORRES, HERNÁN VERÓN, LUCIANA CONTRERAS, et al. An overview of plant-autochthonous microorganisms and fermented vegetable foods[J]. Food Science and Human Wellness,2020,9(2):112−123. doi: 10.1016/j.fshw.2020.02.006
|
[30] |
SOOK JONG RHEE, JANGEUN LEE, CHERLHO LEE. Importance of lactic acid bacteria in Asian fermented foods[J]. Microbial Cell Factories,2011,10(S1):1−13.
|
1. |
李杰,李霜,张鹏霞,祝丽玲,周健,孙雪微,宋丽新. 发酵食品中具有潜在降尿酸功能乳酸菌的筛选及特性分析. 食品研究与开发. 2024(07): 174-180 .
![]() | |
2. |
于鑫迪,刘静雅,任秀梅,陈炼红. 功能性牦牛酸奶制备、贮藏期内品质及降嘌呤活性研究. 食品工业科技. 2024(21): 20-29 .
![]() | |
3. |
莫星忧,欧仕益,毋福海,吴帅,吴慧,李倩. 膳食对高尿酸血症的影响及控制研究进展. 农产品加工. 2024(22): 100-104 .
![]() | |
4. |
陈天琦,屈墨涵,张春红,李丹,尹雪斌. 食药同源对防治慢性代谢性疾病的作用及功能农业解决方案. 肥料与健康. 2024(06): 86-90 .
![]() | |
5. |
付喜华,韩四海,刘建学,李佩艳,郭金英,罗登林,岳崇慧. 葡萄蒸馏酒对高尿酸血症模型小鼠肠道菌群的调节作用. 食品科学. 2023(07): 161-168 .
![]() | |
6. |
陈聪聪,周全. 基于网络药理学与分子对接探讨四妙丸“异病同治”强直性脊柱炎和高尿酸血症的作用机制. 河南中医. 2023(10): 1534-1542 .
![]() |