ZHAO Dan, CAO Huiying, SUN Meng, et al. Isolation, Purification and Structural Properties Analysis of Exopolysaccharide from Leuconostoc pseudointestinalis HDL-3[J]. Science and Technology of Food Industry, 2022, 43(21): 115−122. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020092.
Citation: ZHAO Dan, CAO Huiying, SUN Meng, et al. Isolation, Purification and Structural Properties Analysis of Exopolysaccharide from Leuconostoc pseudointestinalis HDL-3[J]. Science and Technology of Food Industry, 2022, 43(21): 115−122. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020092.

Isolation, Purification and Structural Properties Analysis of Exopolysaccharide from Leuconostoc pseudointestinalis HDL-3

More Information
  • Received Date: February 13, 2022
  • Available Online: August 27, 2022
  • A strain of lactic acid bacteria (LAB) with high production of exopolysaccharides (EPS) was isolated and screened from the fermentation broth of natural sauerkraut in Northeast China. The strain was identified as Leuconostoc pseudomesenteroides HDL-3 by 16S rDNA. This strain was used to produce EPS by fermentation. EPS was isolated and purified, and the structure and properties of EPS were analyzed. The results showed that the EPS was a linear glucan linked by α-(1, 6) glycosidic bonds. The molecular weight was 1.581×106 Da. The EPS presents a smooth, shiny and compact sheet-like amorphous structure. The solubility, water-holding capacity were 98.63%±1.03% and 401.30%±4.92%, respectively. In addition, the EPS showed the shear dilution characteristics of non-Newtonian fluid. The viscosity was positively correlated with concentration and negatively correlated with temperature and pH. It not only had strong emulsifying ability for soybean oil, sunflower seed oil and benzene, but also had good scavenging ability for DPPH and ABTS.
  • [1]
    黄承敏, 肖茜, 王蓉蓉, 等. 一株高产胞外多糖乳酸菌的分离鉴定及其产胞外多糖的研究[J]. 中国酿造,2019,38(1):80−83. [HUANG C M, XIAO Q, WANG R R. et al. Isolation and identification of a lactic acid bacteria with high-yield extracellular polysaccharide and their production of extracellular polysaccharide[J]. China Brewing,2019,38(1):80−83. doi: 10.11882/j.issn.0254-5071.2019.01.016
    [2]
    刘丽娜, 郭尚旭, 姜静, 等. 融合魏斯氏菌(Weissella confusa) XG-3产胞外多糖条件研究[J]. 黑龙江大学工程学报,2020,11(3):85−91. [LIU L N, GUO S X, JIANG J, et al. Study on production condition of Weissella confusa XG-3 exopolysaccharide[J]. Journal of Heilongjiang Hydraulic Engineering College,2020,11(3):85−91.
    [3]
    孟凡岭, 万姝含, 胡风庆. 乳酸菌胞外多糖生物活性研究进展[J]. 辽宁大学学报:自然科学版,2018,45(4):379−384. [MENG F L, WAN S H, HU F Q, et al. Progress in biological activity of exopolysaccharide of lactic acid bacteria[J]. Journal of Liaoning University (Natural Science Edition),2018,45(4):379−384.
    [4]
    彭家伟, 黄桂东, 黄伟志, 等. 乳酸菌胞外多糖在食品工业中的应用[J]. 农产品加工:下,2017(9):47−52. [PENG J W, HUANG G D, HUANG W Z, et al. Applications in food industry of exopolysaccharides produced by lactic acid bacteria[J]. AEM Roducts Rocessing,2017(9):47−52.
    [5]
    JIANG J, GUO S, PING W, et al. Optimization production of exopolysaccharide from Leuconostoc lactis L2 and its partial characterization[J]. International Journal of Biological Macromolecules,2020,159:630−639. doi: 10.1016/j.ijbiomac.2020.05.101
    [6]
    DU R, QIAO X, ZHAO F, et al. Purification, characterization and antioxidant activity of dextran produced by Leuconostoc pseudomesenteroides from homemade wine[J]. Carbohydrate Polymers,2018,198(15):529−536.
    [7]
    ZHAO D, JIANG J, DU R, et al. Purification and characterization of an exopolysaccharide from Leuconostoc lactis L2[J]. International Journal of Biological Macromolecules,2019,139:1224−1231. doi: 10.1016/j.ijbiomac.2019.08.114
    [8]
    索超, 曲晓军, 崔艳华. 乳酸菌胞外多糖研究进展[J]. 中国乳品工业,2017,45(11):32−36. [SUO C, QU X J, CUI Y H. Research advances in extracellular polysaccharide produced by lactic acid bacteria[J]. China Dairy Industry,2017,45(11):32−36. doi: 10.3969/j.issn.1001-2230.2017.11.007
    [9]
    姜陈波, 洪青, 杭锋. 乳酸菌胞外多糖构效关系的研究进展[J]. 乳业科学与技术,2017,40(4):30−35. [JIANG C B, HONG Q, HANG F. Advances in research on structure-function relationship of exopolysaccharides from lactic acid bacteria[J]. Journal of Dairy Science and Technology,2017,40(4):30−35. doi: 10.15922/j.cnki.jdst.2017.04.007
    [10]
    邸维, 张英春, 易华西, 等. 乳酸菌胞外多糖结构解析的研究方法[J]. 分析化学,2018,46(6):875−882. [DI W, ZHANG Y C, YI H X, et al. Research methods for structural analysis of lactic acid bacteria induced exopolysaccharides[J]. Chinese Journal of Analytical Chemistry,2018,46(6):875−882. doi: 10.11895/j.issn.0253-3820.181178
    [11]
    张钊瑞, 张晨, 李大鹏. 微生物多糖的结构与应用研究进展[J]. 食品研究与开发,2021,42(1):182−192. [ZHANG Z R, ZHANG C, LI D P. Advances in structure and application of microbial polysaccharides[J]. Food Research and Development,2021,42(1):182−192.
    [12]
    张书光, 张云娟, 代卫东, 等. Viili乳制品中干酪乳杆菌的分离鉴定[J]. 微生物学杂志,2012,32(3):47−52. [ZHANG S G, ZHANG Y J, DAI W D, et al. Isolation and identification of Lactobacillus casei strains from Viili yogurt[J]. Journal of Microbiology,2012,32(3):47−52. doi: 10.3969/j.issn.1005-7021.2012.03.009
    [13]
    DU R, XING H, YANG Y, et al. Optimization, purification and structural characterization of a dextran produced by L. mesenteroides isolated from Chinese sauerkraut[J]. Carbohydrate Polymers,2017,174:409−416. doi: 10.1016/j.carbpol.2017.06.084
    [14]
    WANG M M, BI J. Modification of characteristics of kefiran by changing the carbon source of Lactobacillus kefiranofaciens[J]. Journal of the Science of Food & Agriculture,2010,88(5):763−769.
    [15]
    DAS D, BARUAH R, GOYAL A. A food additive with prebiotic properties of an α-D-glucan from Lactobacillus plantarum DM5[J]. International Journal of Biological Macromolecules,2014,69:20−26. doi: 10.1016/j.ijbiomac.2014.05.029
    [16]
    WANG X, LÜ X. Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water[J]. Carbohydrate Polymers,2014,102:174−184. doi: 10.1016/j.carbpol.2013.11.012
    [17]
    PEI F, MA Y, CHEN X, et al. Purification and structural characterization and antioxidant activity of levan from Bacillus megaterium PFY-147[J]. International Journal of Biological Macromolecules,2020,161(15):1181−1188.
    [18]
    ZHOU Q, FENG F, YANG Y, et al. Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine[J]. International Journal of Biological Macromolecules,2018,107:529−536.
    [19]
    ZHAO D, JIANG J, LIU L, et al. Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications[J]. International Journal of Biological Macromolecules,2021,178:306−315. doi: 10.1016/j.ijbiomac.2021.02.182
    [20]
    YANG Y, FENG F, ZHOU Q, et al. Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste[J]. International Journal of Biological Macromolecules,2018,114:529−535. doi: 10.1016/j.ijbiomac.2018.03.162
    [21]
    ZHU Y, WANG C, JIA S, et al. Purification, characterization and antioxidant activity of the exopolysaccharide from Weissella cibaria SJ14 isolated from Sichuan Paocai[J]. International Journal of Biological Macromolecules,2018,115:820−828. doi: 10.1016/j.ijbiomac.2018.04.067
    [22]
    李尧, 卢承蓉, 刘丹, 等. 乳酸片球菌胞外多糖的分离纯化, 结构分析及抗氧化活性研究[J]. 食品与发酵工业,2021,47(19):35−42. [LI Y, LU C R, LIU D, et al. Structure and antioxidant activity of Pediococcus lactis extracellular polysaccharide[J]. Food and Fermentation Industries,2021,47(19):35−42.
    [23]
    YE G, CHEN Y, WANG C, et al. Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage[J]. International Journal of Biological Macromolecules,2018,120:1315−1321. doi: 10.1016/j.ijbiomac.2018.09.019
    [24]
    FENG F, ZHOU Q, YANG Y, et al. Structural characterization of glucan produced by Lactobacillus sake L-7 from sausage[J]. Transactions of Tianjin University,2019,25(1):80−86.
    [25]
    XU X, PENG Q, ZHANG Y, et al. Antibacterial potential of a novel Lactobacillus casei strain isolated from Chinese northeast sauerkraut and the antibiofilm activity of its exopolysaccharides[J]. Food & Function,2020,11:4697−4706.
    [26]
    王荣平, 图布兴吉雅, 郝娜, 等. 乳酸菌胞外多糖的分离纯化和结构解析[J]. 食品工业科技,2016,37(14):389−394. [WANG R P, TUBU X J Y, HAO N, et al. Isolation, purification and structure identification of exopolysaccharides produced by lactic acid bacteria[J]. Science and Technology of Food Industry,2016,37(14):389−394. doi: 10.13386/j.issn1002-0306.2016.14.069
    [27]
    KUMAR R, BANSAL P, SINGH J, et al. Purification, partial structural characterization and health benefits of exopolysaccharides from potential probiotic Pediococcus acidilactici NCDC 252[J]. Process Biochemistry,2020,99:79−86. doi: 10.1016/j.procbio.2020.08.028
    [28]
    ZDH A, MB B, SB C. Structural analysis and properties of dextran produced by Weissella confusa and the effect of different cereals on its rheological characteristics[J]. International Journal of Biological Macromolecules,2020,143:305−313. doi: 10.1016/j.ijbiomac.2019.12.036
    [29]
    LIU Z, ZHANG Z, QIU L, et al. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04[J]. Journal of Dairy Science,2017,100(9):6895. doi: 10.3168/jds.2016-11944
    [30]
    冯小婉, 张汇, 赖凤羲, 等. 植物乳杆菌AR307胞外多糖的物化性质的研究[J]. 工业微生物,2021,51(6):1−8. [FENG X W, ZHANG H, LAI F X, et al. Physicochemical properties of exopolysaccharide from Lactobacillus plantarum AR307[J]. Industrial Microbiology,2021,51(6):1−8. doi: 10.3969/j.issn.1001-6678.2021.06.001
    [31]
    XU Y, CUI Y, WANG X, et al. Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041[J]. International Journal of Biological Macromolecules,2019,128(1):480−492.
    [32]
    RUAS-MADIEDO P, CG R G. Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria[J]. Journal of Dairy Science,2005,88(3):843−856. doi: 10.3168/jds.S0022-0302(05)72750-8
    [33]
    陈志娜, 杨希娟, 师俊玲. 西藏灵菇发酵乳胞外多糖的流变学特性[J]. 食品科学,2016,37(5):1−5. [CHEN Z N, YANG X J, SHI J L. Rheological properties of exopolysaccharide produced by Tibetan kefir[J]. Food Science,2016,37(5):1−5.
    [34]
    XING H, DU R, ZHAO F, et al. Optimization, chain conformation and characterization of exopolysaccharide isolated from Leuconostoc mesenteroides DRP105[J]. International Journal of Biological Macromolecules,2018,112:1208−1216. doi: 10.1016/j.ijbiomac.2018.02.068
    [35]
    姜静, 杜仁鹏, 郭尚旭, 等. 融合魏斯氏菌胞外多糖的分离纯化及其生化特性[J]. 食品科学,2020,41(1):9−16. [JING J, DU R P, GUO S X, et al. Separation, purification and biochemical properties of exopolysaccharides from Weissella confusa[J]. Food Science,2020,41(1):9−16. doi: 10.7506/spkx1002-6630-20190623-270
    [36]
    李金泽, 李丘轲, 单安山. 乳酸菌胞外多糖生物学功能及其在畜牧生产中的应用前景[J]. 动物营养学报,2021,33(4):1901−1912. [LI J Z, LI Q K, SHAN A S. Biological activities of exopolysaccharides produced by lactic acid bacteria and its application prospect in livestock production[J]. Chinese Journal of Animal Nutrition,2021,33(4):1901−1912. doi: 10.3969/j.issn.1006-267x.2021.04.011
    [37]
    刘煜珺, 张雨晴, 高原, 等. 乳杆菌胞外多糖抗氧化活性研究[J]. 中国食品学报,2019,19(6):21−35. [LIU Y J, ZHANG Y Q, GAO Y, et al. Studies on the antioxidative activity of exopolysaccharide from Lactobacillus strains[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(6):21−35. doi: 10.16429/j.1009-7848.2019.06.003
    [38]
    WANG J, ZHAO X, TIAN Z, et al. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir[J]. Carbohydrate Polymers,2015,125:16−25. doi: 10.1016/j.carbpol.2015.03.003
  • Cited by

    Periodical cited type(10)

    1. 尉洁,张玲芳,胡顺安,秦孟春,马琳,李丹,段翠翠. 长白山区发酵酱菜中高产胞外多糖乳酸菌的筛选及多糖抗氧化性分析. 食品工业科技. 2024(02): 110-117 . 本站查看
    2. 赵丹,赵守祺,王烁,陈曦,杜仁鹏. 融合魏斯氏菌P2胞外多糖对巨噬细胞RAW264.7增殖及免疫调节活性的影响. 黑龙江大学自然科学学报. 2024(02): 200-206 .
    3. 虞宁馨,于连升,齐心彤,葛菁萍,杜仁鹏. 肠膜明串珠菌葡聚糖蔗糖酶的生物信息学分析. 黑龙江大学自然科学学报. 2024(05): 544-552 .
    4. 于连升,葛菁萍,平文祥,杜仁鹏. 环二鸟苷酸调控细菌胞外多糖生物合成的研究进展. 食品工业科技. 2023(09): 422-430 . 本站查看
    5. 张孟雨,李尧,彭嘉屹,陈禹豪,曾凤婷,钟青萍. 高产EPS乳酸片球菌的航天育种及其EPS性能研究. 食品工业科技. 2023(17): 158-167 . 本站查看
    6. 李旭阳,郭润晴,路江浩,鄢梦洁,张鹏,刘明月,杨玲. 嗜热链球菌S131对巨噬细胞的免疫调节作用研究. 食品与发酵工业. 2023(16): 247-252 .
    7. 罗伟,杨立军,崔晨旭,王玉娇,陈琼,王锐丽,叶润. 内生菌协同发酵对半夏多糖及其生物活性的影响. 中南农业科技. 2023(08): 52-56+61 .
    8. 杨立军,花娇娇,崔晨旭,贾艳娇,陈琼,赫丁轩. 一株高产胞外多糖半夏内生真菌的鉴定、发酵条件优化及生物活性测定. 中国酿造. 2023(11): 109-114 .
    9. 唐华英,罗欣锦,张云野,杨睿睿,叶广彬,王长丽. 假肠膜明串珠菌GX-3产胞外多糖条件优化及其理化性质研究. 中国乳品工业. 2022(08): 15-19+26 .
    10. 兰冬雪,瞿茜楠,黄天,姚国强,扎木苏,彭传涛,李兆杰. 益生菌活性代谢产物的研究及应用进展. 食品工业科技. 2022(24): 11-20 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (204) PDF downloads (34) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return