LI Qin, LI Yuwan, RAO Lei, et al. Recent Advances in the Interactions between Starch and Polyphenols Regulated by Food Processing Methods[J]. Science and Technology of Food Industry, 2022, 43(22): 481−490. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020082.
Citation: LI Qin, LI Yuwan, RAO Lei, et al. Recent Advances in the Interactions between Starch and Polyphenols Regulated by Food Processing Methods[J]. Science and Technology of Food Industry, 2022, 43(22): 481−490. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020082.

Recent Advances in the Interactions between Starch and Polyphenols Regulated by Food Processing Methods

More Information
  • Received Date: February 13, 2022
  • Available Online: September 12, 2022
  • Starch and polyphenols can interact through predominant non-covalent bonds to form a range of distinctive starch-polyphenol complexes, which exhibit varied physicochemical properties, nutritional characteristics, and bioavailability. This paper mainly reviews the current regulation methods and effect, as well as the regulation mechanism of different food processing methods to the interactions between starch and polyphenol in perspective of thermal, non-thermal and the combined processing methods in recent decades. Different food processing methods turn out to modulate the interactions between starch and polyphenols by changing the multi-scale structure of starch. Thermal processing methods affect starch structure through strong thermal effect, which is beneficial to strengthen the interactions between starch and polyphenols and induce the formation of new crystalline structure. Non-thermal processing methods are considered to have a less obvious effect on starch structure in comparison of thermal processing methods, but could have more precise modifications. And the combined processing methods can further improve efficiency. This review is expected to provide reference for future quality control in food system by appropriate processing technology.
  • [1]
    王芳. 以淀粉为基质的EGCG载体化构建及特性研究[D]. 无锡: 江南大学, 2016

    WANG F. Research on the construction and characteristics of starch-based EGCG delivery system[D]. Wuxi: Jiangnan University, 2016.
    [2]
    MARTINEZ-FLORES H E, CHANG Y K, MARTINEZ-BUSTOS F, et al. Effect of high fiber products on blood lipids and lipoproteins in hamsters[J]. Nutrition Research,2003,24(1):85−93.
    [3]
    MARÍN L, MIGUÉLEZ E M, VILLAR C J, et al. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties[J]. BioMed Research International,2015:905215.
    [4]
    VELDERRAIN-RODRÍGUEZ G R, PALAFOX-CARLOS H, WALL-MEDRANO A, et al. Phenolic compounds: Their journey after intake[J]. Food and Function,2014,5(2):189−197. doi: 10.1039/C3FO60361J
    [5]
    万芊. 多酚与玉米淀粉的相互作用及其对淀粉消化和加工特性的影响[D]. 无锡: 江南大学, 2018

    WAN Q. Interaction between polyphenol and corn starch and its effects on digestibility and processing properties of starch[D]. Wuxi: Jiangnan University, 2018.
    [6]
    FAN Z. Interactions between starch and phenolic compound[J]. Trends in Food Science and Technology,2015,43(2):129−143. doi: 10.1016/j.jpgs.2015.02.003
    [7]
    DAS A B, GOUD V V, DAS C. Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology[J]. International Journal of Biological Macromolecules,2019,124:573−581. doi: 10.1016/j.ijbiomac.2018.11.247
    [8]
    SHI Y, ZHOU S, FAN S, et al. Encapsulation of bioactive polyphenols by starch and their impacts on gut microbiota[J]. Current Opinion in Food Science,2020,38:102−111.
    [9]
    FAN Z. Encapsulation and delivery of food ingredients using starch based systems[J]. Food Chemistry, 2017, 229: 542-552.
    [10]
    FANG C L, HUANG J R, PU H Y, et al. Cold-water solubility, oil-adsorption and enzymolysis properties of amorphous granular starches[J]. Food Hydrocolloids,2021,117(1):106669.
    [11]
    赵佳. 水-热处理对淀粉理化特性的影响[D]. 杨凌: 西北农林科技大学, 2012

    ZHAO J. Effect of hydrothermal of the physicochemical properties of starches[D]. Xianyang: Northwest Agriculture and Forestry University, 2012.
    [12]
    赵蓓蓓. 莲子淀粉-茶多酚复合物的制备及理化特性研究[D]. 福州: 福建农林大学, 2019

    ZHAO B B. Research on the preparation and physicochemical properties of the lotus seed starch-green tea polyphenol complexes[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [13]
    韩雪琴, 黄立新, 郝娟, 等. 没食子酸与大米淀粉的相互作用[J]. 现代食品科技,2021,37(10):103−111. [HAN X Q, HUANG L X, HAO J, et al. The interactions between gallic acid and rice starch[J]. Modern Food Science and Technology,2021,37(10):103−111. doi: 10.13982/j.mfst.1673-9078.2021.10.1157
    [14]
    刘天棋. 淀粉-茶多酚组合体的构建及其对餐后血糖反应的影响[D]. 无锡: 江南大学, 2018

    LIU T Q. Construction of starch-tea polyphenols composition and its effects on postprandial blood glucose response[D]. Wuxi: Jiangnan University, 2018.
    [15]
    王明珠. 茶多酚对淀粉慢消化特性的影响和机制研究[D]. 无锡: 江南大学, 2010

    WANG M Z. Effect of tea polyphenol on the slow digesting properties of starch and the mechanism[D]. Wuxi: Jiangnan University, 2010.
    [16]
    李翠翠, 孙晓莎, 任顺成. 槲皮素和芦丁对小麦淀粉的消化特性及其之间相互作用的研究[J]. 食品工业科技,2021,42(5):45−50. [LI C C, SUN X S, REN S C. Study on the digestibility and interaction of quercetin and rutin to wheat starch[J]. Food Industry Science and Technology,2021,42(5):45−50. doi: 10.13386/j.issn1002-0306.2020050200
    [17]
    ELESSANDRA D R Z, ALVARO R G D. Impact of heat-moisture treatment and annealing in starches: A review[J]. Carbohydrate Polymers,2010,83(2):317−328.
    [18]
    宋璐璐, 马梦婷, 徐义娟, 等. 热加工对淀粉结构和理化性质的影响研究进展[J]. 粮油食品科技,2021,29(3):111−117. [SONG L L, MA M T, XU Y J, et al. Research progress in the effect of thermal treatments on the structural and physicochemical properties of starch[J]. Science and Technology of Cereals, Oils and Foods,2021,29(3):111−117. doi: 10.16210/j.cnki.1007-7561.2021.03.015
    [19]
    李华, 康丹辉, 陆启玉. 马铃薯淀粉改性及其吸附茶多酚的条件优化[J]. 中国食品添加剂,2019,30(5):62−69. [LI H, KANG D H, LU Q Y. Study on modified potato starch and optimization of conditions for adsorption of tea polyphenols[J]. China Food Additives,2019,30(5):62−69. doi: 10.3969/j.issn.1006-2513.2019.05.003
    [20]
    张攀峰. 不同品种马铃薯淀粉结构与性质的研究[D]. 广州: 华南理工大学, 2012

    ZHANG P F. Study on structure and properties of different varieties potato starches[D]. Guangzhou: South China University of Technology, 2012.
    [21]
    ZHANG L, CAI W, SHAN J, et al. Physical properties and loading capacity of gelatinized granular starches[J]. Industrial Crops and Products,2014,53:323−329. doi: 10.1016/j.indcrop.2013.12.053
    [22]
    WANG X, LENG X, ZHANG G. The loosening effect of tea polyphenol on the structure of octenyl succinic anhydride modified waxy maize starch[J]. Food Hydrocolloids,2020,99:105367. doi: 10.1016/j.foodhyd.2019.105367
    [23]
    CHEN N, CHEN L, GAO H, et al. Mechanism of bridging and interfering effects of tea polyphenols on starch molecules[J]. Journal of Food Processing and Preservation,2020,44(8):e14576.
    [24]
    MA S, FAN D, WANG L, et al. The impact of microwave heating on the granule state and thermal properties of potato starch[J]. Starch-Stä rke,2015,67(5-6):391−398.
    [25]
    WANG J, JIANG X, ZHENG B, et al. Structural and physicochemical properties of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation[J]. Journal of Food Science and Technology,2021,58(11):4157−4166. doi: 10.1007/s13197-020-04881-w
    [26]
    刘昊, 顾丰颖, 刘子毅, 等. 微波的热与非热效应对淀粉性质的影响[J]. 核农学报,2020,34(2):363−369. [LIU H, GU F Y, LIU Z Y, et al. Effects of thermal and non-thermal effects of microwave on the properties of starch[J]. Journal of Nuclear Agricultural Sciences,2020,34(2):363−369. doi: 10.11869/j.issn.100-8551.2020.02.0363
    [27]
    徐捍山. 挤出协同多酚分子相互作用调控大米淀粉消化性能和糊性质的研究[D]. 广东: 华南理工大学, 2020

    XU H S. Understanding the digestibility and paste properties of rice starch subjected to extrusion processing and polyphenol molecular interaction complex[D]. Guangzhou: South China University of Technology, 2020.
    [28]
    郑波. 热挤压3D打印构建大米淀粉--儿茶素复合物的消化性能及抗肥胖机理研究[D]. 广东: 华南理工大学, 2020

    ZHENG B. The mechanism study on digestibility and anti-obesity effects of rice starch-catechin complex constructed by hot-extrusion 3D printing[D]. Guangzhou: South China University of Technology, 2020.
    [29]
    吴培龙, 张黎明, 杨鑫, 等. 玉米多孔淀粉对茶多酚的吸附性能研究[J]. 现代食品科技,2010,26(9):938−941. [WU P L, ZHANG L M, YANG X, et al. Adsorption characteristics of corn porous starch on tea polyphenols[J]. Modern Food Science and Technology,2010,26(9):938−941. doi: 10.13982/j.mfst.1673-9078.2010.09.004
    [30]
    LIU C, GE S, YANG J, et al. Adsorption mechanism of polyphenols onto starch nanoparticles and enhanced antioxidant activity under adverse conditions[J]. Journal of Functional Foods,2016,26:632−644. doi: 10.1016/j.jff.2016.08.036
    [31]
    TAN X, ZHANG B, CHEN L, et al. Effect of planetary ball-milling on multi-scale structures and pasting properties of waxy and high-amylose cornstarches[J]. Innovative Food Science and Emerging Technologies,2015,30:198−207. doi: 10.1016/j.ifset.2015.03.013
    [32]
    TAMAKI S, HISAMATSU M, TERANISHI K, et al. Structural change of potato starch granules by ball-mill treatment[J]. Starch-Stä rke,1997,49(11):431−438.
    [33]
    张智涵. 淀粉与茶多酚共研磨对淀粉理化性质和消化性的影响[D]. 天津: 天津科技大学, 2018

    ZHANG Z H. Effect of co-milling with tea polyphenols on the physicochemical properties and digestibility of starch [D]. Tianjin: Tianjin University of Science and Technology, 2018.
    [34]
    LÜ Y, ZHANG L, LI M, et al. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols[J]. International Journal of Biological Macromolecules,2019,129:207−213. doi: 10.1016/j.ijbiomac.2019.02.028
    [35]
    ZHANG K, MA X, DAI Y, et al. Effects of high hydrostatic pressure on structures, properties of starch, and quality of cationic starch[J]. Cereal Chemistry,2019,96(2):338−348.
    [36]
    王超. 高静压糊化大米淀粉结构及机制研究[D]. 北京: 中国农业大学, 2020

    WANG C. Study on structure and gelatinization mechanism of high hydrostatic pressure gelatinized rice starch [D]. Beijing: China Agricultural University, 2020.
    [37]
    GUO Z, ZHAO B, CHEN J, et al. Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure[J]. Food Chemistry,2019,297:124992. doi: 10.1016/j.foodchem.2019.124992
    [38]
    DU J, YANG Z, XU X, et al. Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch[J]. Food Hydrocolloids,2019,91:256−262. doi: 10.1016/j.foodhyd.2019.01.035
    [39]
    DELADINO L, TEIXEIRA A S, NAVARRO A S, et al. Corn starch systems as carriers for yerba mate (Ilex paraguariensis) antioxidants[J]. Food and Bioproducts Processing,2015,94:463−472. doi: 10.1016/j.fbp.2014.07.001
    [40]
    WEI B, CAI C, XU B, et al. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process[J]. Food Chemistry,2018,240:165−173. doi: 10.1016/j.foodchem.2017.07.078
    [41]
    何海. 基于高压均质环境中不同类型多酚化合物调控大米淀粉消化性能的分子机制探讨[D]. 广州: 华南理工大学, 2020

    HE H. The molecular mechanism of different types of polyphenol compounds regulating the digestibility of rice starch based on high-pressure homogenization environment [D]. Guangzhou: South China University of Technology, 2020.
    [42]
    ZHAO B, WANG B, ZHENG B, et al. Effects and mechanism of high-pressure homogenization on the characterization and digestion behavior of lotus seed starch-green tea polyphenol complexes[J]. Journal of Functional Foods,2019,57:173−181. doi: 10.1016/j.jff.2019.04.016
    [43]
    李可, 李燕, 康超娣, 等. 常压等离子体射流对鸡肉肌原纤维蛋白结构和流变特性的影响[J]. 食品科学,2020,41(19):124−131. [LI K, LI Y, KANG C D, et al. Effect of atmospheric pressure plasma jet on structural and rheological properties of chicken myofibrillar protein[J]. Food Science,2020,41(19):124−131. doi: 10.7506/spkx1002-6630-20190916-202
    [44]
    THIRUMDAS R, KADAM D, ANNAPURE U S. Cold plasma: An alternative technology for the starch modification[J]. Food Biophysics,2017,12(1):129−139. doi: 10.1007/s11483-017-9468-5
    [45]
    CHANG R, LU H, YAOQI T, et al. Structural modification and functional improvement of starch nanoparticles using vacuum cold plasma[J]. International Journal of Biological Macromolecules,2020,145:197−206. doi: 10.1016/j.ijbiomac.2019.12.167
    [46]
    YANG Q, LU X, CHEN Y, et al. Fine structure, crystalline and physicochemical properties of waxy corn starch treated by ultrasound irradiation[J]. Ultrasonics-Sonochemistry,2019,51:350−358. doi: 10.1016/j.ultsonch.2018.09.001
    [47]
    蒲华寅. 等离子体作用对淀粉结构及性质影响的研究[D]. 广州: 华南理工大学, 2013

    PU H Y. Effects of plasma on structure and properties of starch [D]. Guangzhou: South China University of Technology, 2013.
    [48]
    丑述睿. 不同pH及超高压条件对大米/玉米淀粉-苹果多酚体系理化性质的影响机理研究[D]. 沈阳: 沈阳农业大学, 2020

    CHOU S R. Effect of pH and hydrostatic pressure processing on physicochemical properties and mechanism of rice/maize starch-apple polyphenol[D]. Shenyang: Shenyang Agricultural University, 2020.
    [49]
    黎明明, 李璐, 解新安, 等. 高压均质对EGCG-OSA玉米淀粉复合体的结构及其抗氧化特性的影响[J]. 食品工业科技,2021,42(23):20−26. [LI M M, LI L, XIE X N, et al. Effect of high pressure homogenization on the structure and antioxidant properties of EGCG-OSA corn starch complex[J]. Science and Technology of Food Industry,2021,42(23):20−26. doi: 10.13386/j.issn1002-0306.2021010022
    [50]
    LIU Y, CHEN L, XU H, et al. Understanding the digestibility of rice starch-gallic acid complexes formed by high pressure homogenization[J]. International Journal of Biological Macromolecules,2019,134:856−863. doi: 10.1016/j.ijbiomac.2019.05.083
    [51]
    GAO S, LIU H, SUN L, et al. Rheological, thermal andin vitro digestibility properties on complex of plasma modified tartary buckwheat starches with quercetin[J]. Food Hydrocolloids,2021,110:106209. doi: 10.1016/j.foodhyd.2020.106209
    [52]
    李冬雪. 微波和超声波作用对木薯淀粉颗粒晶态及反应活性的影响[D]. 南宁: 广西民族大学, 2011

    LI D X. Effects of microwave and ultrasonic action on cassava starch particles of crystalline and reactivity[D]. Nanning: Guangxi University for Nationalities, 2011.
    [53]
    ZHAO B, SUN S, LIN H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry,2019,52:50−61. doi: 10.1016/j.ultsonch.2018.11.001
  • Cited by

    Periodical cited type(7)

    1. 郭慧慧,蒋元斌,林丛发,徐绍翔,林泽宇,薛立云. 太子参脱毒苗培养、化学成分及指纹图谱研究进展. 药学研究. 2024(03): 274-281 .
    2. 张森,欧婧,豆晓霞,刘晓东,付本懂. 太子参及提取物对动物免疫调节作用研究进展. 动物医学进展. 2024(05): 97-102 .
    3. 张春雨,邢鹏,周福荣,肖逸豪,赵红兵. 中药复方养肝活血汤对酒精性肝病的临床研究. 中国民族医药杂志. 2024(09): 11-14 .
    4. 倪建成,范永飞,叶祖云. 太子参化学成分、药理作用和应用的研究进展. 中草药. 2023(06): 1963-1977 .
    5. 游绍伟,詹亚梅,王文素,何典城,蓬兴柱,王学勇. 基于“脾虚宛滞”探讨慢性萎缩性胃炎“炎癌转化”与防治思路. 中国实验方剂学杂志. 2023(21): 188-195 .
    6. 文丁苑,梁双敏,国琦,宋晓晓,葛长荣,肖智超. 榆黄菇多糖提取工艺优化及其免疫调节活性评价. 现代食品科技. 2023(10): 233-243 .
    7. 谢雄雄,孟璞岩,朱灵芝,陈宜均,龚斌,李康琴,邓绍勇. 太子参的药理活性、化学成分及繁殖栽培研究进展. 南方林业科学. 2023(05): 60-64+78 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (532) PDF downloads (55) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return