LIU Qiumei, WANG Zefu, LIU Zhenyang, et al. Comparison of Characterization Methods for Denaturation Degree of Shrimp Head Protein during Heating[J]. Science and Technology of Food Industry, 2022, 43(21): 107−114. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020069.
Citation: LIU Qiumei, WANG Zefu, LIU Zhenyang, et al. Comparison of Characterization Methods for Denaturation Degree of Shrimp Head Protein during Heating[J]. Science and Technology of Food Industry, 2022, 43(21): 107−114. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020069.

Comparison of Characterization Methods for Denaturation Degree of Shrimp Head Protein during Heating

More Information
  • Received Date: February 13, 2022
  • Available Online: August 31, 2022
  • In order to select the suitable characterization method for the denaturation degree of shrimp head protein, the mixed protein extracted from shrimp head was heated at 100 ℃ for a certain time. The denaturation degree of protein was characterized and compared by solubility method, SDS-PAGE method, circular dichroism and fluorescence spectrum. The results showed that solubility method, SDS-PAGE method, circular dichroism and fluorescence spectroscopy were consistent in characterizing the denaturation degree of shrimp head protein during heating. The denaturation degree of shrimp head protein with different concentrations showed an S-shaped upward trend during heating, but there was a difference in denaturation rate between heating 1~4 min. Among them, the denaturation degree of protein solubility was the most sensitive to heating time. This showed that solubility was more convenient to choose as a method to characterize the denaturation degree of shrimp head protein. The results provide a method reference for characterizing the degree of protein denaturation in food processing.
  • [1]
    NIRMAL N P, SANTIVARANGKNA C, RAJPUT M S, et al. Trends in shrimp processing waste utilization: An industrial prospective[J]. Trends in Food Science & Technology,2020,103:20−35.
    [2]
    LIU Z Y, LIU Q M, ZHANG D, et al. Comparison of the proximate composition and nutritional profile of byproducts and edible parts of five species of shrimp[J]. Foods,2021,10(11):2603. doi: 10.3390/foods10112603
    [3]
    李晓, 王颖, 李红艳, 等. 凡纳滨对虾虾头与肌肉营养成分分析与评价[J]. 水产科学,2018,37(1):66−72. [LI X, WANG Y, LI H Y, et al. Analysis and assessment of nutrient compositions in head and muscle of pacific white leg shrimp Litopenaeus vannamei[J]. Fisheries Science,2018,37(1):66−72. doi: 10.16378/j.cnki.1003-1111.2018.01.010
    [4]
    LATORRES J M, RIOS D G, SAGGIOMO G, et al. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei)[J]. Journal of Food Science and Technology-Mysore,2018,55(2):721−729. doi: 10.1007/s13197-017-2983-z
    [5]
    GUO X X, HAN X X, HE Y F, et al. Optimization of enzymatic hydrolysis for preparation of shrimp flavor precursor using response methodology[J]. Journal of Food Quality,2014,37(4):229−236. doi: 10.1111/jfq.12091
    [6]
    YAO Y, ZHOU X, HADIATULLAH H, et al. Determination of microbial diversities and aroma characteristics of Beitang shrimp paste[J]. Food Chemistry,2021,344:128695. doi: 10.1016/j.foodchem.2020.128695
    [7]
    吴书建, 张佳男, 高世珏, 等. 南美白对虾虾头制备鲜味水解物的研究[J]. 食品工业科技,2019,40(4):34−42,50. [WU S J, ZHANG J N, GAO S Y, et al. Preparation of hydrolysate with umami from white shrimp (Penaeus vannamei) head[J]. Science and Technology of Food Industry,2019,40(4):34−42,50. doi: 10.13386/j.issn1002-0306.2019.04.006
    [8]
    冯小敏, 杨锡洪, 解万翠, 等. 响应面分析法优化复合酶酶解南美白对虾虾头的工艺条件[J]. 食品科学,2009,30(22):66−70. [FENG X M, YANG X H, JIE W C, et al. Optimization of enzymatic hydrolysis of white shrimp (Penaeus vannamei) head using response surface methodology[J]. Food Science,2009,30(22):66−70. doi: 10.3321/j.issn:1002-6630.2009.22.011
    [9]
    董安迪, 罗帅, 刘书成, 等, 高密度CO2纵向溶解和扩散对虾肉糜凝胶强度的影响[J]. 广东海洋大学学报, 2018, 38(5): 57−63.

    DONG A D, LUO S, LIU S C, et al. Effect of longitudinal dissolution and diffusion of dense phase carbon dioxide on the gel strength of shrimp surimi[J]. Journal of Guangdong Ocean University, 2018, 38(5): 57−63.
    [10]
    任国艳, 宋娅, 康怀彬, 等. 高密度CO2处理提取鲵皮胶原蛋白的工艺优化[J]. 食品科学,2017,38(16):198−204. [REN G Y, SONG Y, KANG H B, et al. Optimization of processing parameters for collagen extraction from Chinese giant salamander (Andrias davidianus) skin after dense phase carbon dioxide pretreatment[J]. Food Science,2017,38(16):198−204. doi: 10.7506/spkx1002-6630-201716031
    [11]
    柴华, 赵谋明, 王金水. 食品蛋白质酶解改性提高功能特性的研究进展[J]. 食品工业科技,2008(1):286−288. [CHAI H, ZHAO M M, WANG J S. Research progress of enhancing the functionality of food proteins by enzymatic modification[J]. Science and Technology of Food Industry,2008(1):286−288. doi: 10.13386/j.issn1002-0306.2008.01.031
    [12]
    曹晓杰, 孙钦秀, 魏帅, 等. 加热过程中虾肌肉组织蛋白酶L的酶活力变化及其动力学[J]. 广东海洋大学学报,2020,40(3):108−113. [CAO X J, SUN Q X, WEI S, et al. Changes and kinetics activity of cathepsin-L from shrimp muscle during heating[J]. Journal of Guangdong Ocean University,2020,40(3):108−113. doi: 10.3969/j.issn.1673-9159.2020.03.014
    [13]
    MAO W J, LI X L, FUKUOKA M, et al. Study of Ca2+-ATPase activity and solubility in the whole kuruma prawn (Marsupenaeus japonicus) meat during heating: Based on the kinetics analysis of myofibril protein thermal denaturation[J]. Food and Bioprocess Technology,2016,9(9):1511−1520. doi: 10.1007/s11947-016-1739-5
    [14]
    李媛, 刘通讯, 王永江, 等. 低值鱼蛋白的热变性与酶解特性关系研究[J]. 食品科学,2005(5):50−53. [LI Y, LIU T X, WANG Y J, et al. Study on the relationship between thermal denaturation and enzymatic hydrolysis characteristics of low-price fish protein[J]. Food Science,2005(5):50−53. doi: 10.3321/j.issn:1002-6630.2005.05.007
    [15]
    吴伟, 林亲录, 华欲飞. 丙二醛氧化修饰对大豆蛋白热变性影响[J]. 粮食与油脂,2012,25(10):9−11. [WU W, LIN Q L, HUA Y F. Effects of oxidative modification of malondialdehyde on thermal denaturation of soybean protein[J]. Grain and Oil,2012,25(10):9−11. doi: 10.3969/j.issn.1008-9578.2012.10.005
    [16]
    NIKOLAIDIS A, MOSCHAKIS T. Studying the denaturation of bovine serum albumin by a novel approach of difference-UV analysis[J]. Food Chemistry,2017,215:235−244. doi: 10.1016/j.foodchem.2016.07.133
    [17]
    QIAN F, SUN J Y, CAO D, et al. Experimental and modelling study of the denaturation of milk protein by heat treatment[J]. Food Science of Animal Resources,2017,37(1):44−51. doi: 10.5851/kosfa.2017.37.1.44
    [18]
    邵虎明. 日本沼虾原肌球蛋白的分离鉴定及致敏性分析[D]. 南昌: 南昌大学, 2019.

    SHAO H M. Preparation, identification and allergenicity assessment of tropomyosin from Macrobrachium japonicus[D]. Nanchang: Nanchang University, 2019.
    [19]
    刘书成, 陈亚励, 郭明慧, 等. 高密度CO2处理过程中虾肌球蛋白溶液浊度和溶解度的变化[J]. 食品科学,2017,38(19):42−48. [LIU S C, CHEN Y L, GUO M H, et al. Change in turbidity and solubility of myosin solution fromLitopenaeus vannamei treated by dense phase carbon dioxide[J]. Food Science,2017,38(19):42−48.
    [20]
    陈力扬, 华欲飞, 孔祥珍, 等. 预热变性程度对大豆蛋白凝胶性质的影响[J]. 中国油脂,2019,44(11):56−62. [CHEN L Y, HUA Y F, KONG X Z, et al. Effect of pre-heating denaturation degree on gel properties of soy protein[J]. China Oils and Fats,2019,44(11):56−62.
    [21]
    SUN Q X, CHEN Q, XIA X F, et al. Effects of ultrasound-assisted freezing at different power levels on the structure and thermal stability of common carp (Cyprinus carpio) proteins[J]. Ultrasonics Sonochemistry,2019,54:311−320. doi: 10.1016/j.ultsonch.2019.01.026
    [22]
    DONG X, WANG J, RAGHAVAN V. Impact of microwave processing on the secondary structure, in vitro protein digestibility and allergenicity of shrimp (Litopenaeus vannamei) proteins[J]. Food Chemistry,2021,337:127811. doi: 10.1016/j.foodchem.2020.127811
    [23]
    WANG J M, XIA N, YANG X Q, et al. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: Relationship to structural properties[J]. Journal of Agricultural and Food Chemistry,2012,60(12):3302−3310. doi: 10.1021/jf205128v
    [24]
    HALL A E, MORARU C I. Structure and function of pea, lentil and faba bean proteins treated by high pressure processing and heat treatment[J]. LWT,2021,152:112349. doi: 10.1016/j.lwt.2021.112349
    [25]
    罗嫚. 微波低温加热对猪肉特性影响的研究[D]. 广州:华南理工大学, 2015.

    LUO M. Study on the influence of microwave low temperature heating on pork properties[D]. Guangzhou: South China University of Technology, 2015.
    [26]
    MIR N A, RIAR C S, SINGH S. Improvement in the functional properties of quinoa (Chenopodium quinoa) protein isolates after the application of controlled heat-treatment: Effect on structural properties[J]. Food Structure,2021,28:100189. doi: 10.1016/j.foostr.2021.100189
    [27]
    MIZUTANI Y, SHIBATA M, YAMADA S, et al. Effects of heat treatment under low moisture conditions on the protein and oil in soybean seeds[J]. Food Chemistry,2019,275(1):577−584.
    [28]
    ROGERS D M, JASIM S B, DYER N T, et al. Electronic circular dichroism spectroscopy of proteins[J]. Chem,2019,5(11):2751−2774. doi: 10.1016/j.chempr.2019.07.008
    [29]
    NIVALA O, NORDLUND E, KRUUS K, et al. The effect of heat and transglutaminase treatment on emulsifying and gelling properties of faba bean protein isolate[J]. LWT,2021,139:110517. doi: 10.1016/j.lwt.2020.110517
    [30]
    MALIK M A, SAINI C S. Heat treatment of sunflower protein isolates near isoelectric point: Effect on rheological and structural properties[J]. Food Chemistry,2019,276(15):554−561.
    [31]
    顾佳丽, 伊鲁东, 李东玲, 等. 光谱法研究小分子与蛋白质间相互作用的进展[J]. 科学技术与工程,2018,18(14):85−90. [GU J L, YI L D, LI D L, et al. Progress of study on interaction between small molecules and proteins by spectroscopy[J]. Science Technology and Engineering,2018,18(14):85−90. doi: 10.3969/j.issn.1671-1815.2018.14.014
    [32]
    AYALA N, ZAMORA A, RINNAN Å, et al. The effect of heat treatment on the front-face fluorescence spectrum of tryptophan in skim milk[J]. Journal of Food Composition and Analysis,2020,92:103569. doi: 10.1016/j.jfca.2020.103569
    [33]
    徐永霞, 王瑞, 李学鹏, 等. 热处理对鱼肌原纤维蛋白结构及腥味物质结合能力的影响[J]. 中国食品学报,2020,20(9):131−138. [XU Y X, WANG R, LI X P, et al. Effects of heat treatment on the structure of myofibrillar protein and binding ability with fishy odor compounds[J]. Chinese Journal of Foodstuffs,2020,20(9):131−138. doi: 10.16429/j.1009-7848.2020.09.016
    [34]
    顾炜, 刘远洋, 杨晓泉, 等. 喷射蒸煮辅助提取对花生分离蛋白结构和功能的影响[J]. 食品与发酵工业,2011,37(9):151−156. [GU W, LIU Y Y, YANG X Q, et al. The effects of steam jet cooking assisted extraction on the structure and function of peanut protein isolate[J]. Food and Fermentation Industries,2011,37(9):151−156. doi: 10.13995/j.cnki.11-1802/ts.2011.09.035
    [35]
    WAN Y, LI Y, GUO S. Characteristics of soy protein isolate gel induced by glucono-δ-lactone: Effects of the protein concentration during preheating[J]. Food Hydrocolloids,2021,113:106525. doi: 10.1016/j.foodhyd.2020.106525
  • Cited by

    Periodical cited type(7)

    1. 陈雪花,陈建平,罗宝浈,李佳睿,李瑞,刘晓菲,宋兵兵,钟赛意. 硫酸软骨素纳米硒的结构表征及其对Hela细胞迁移和侵袭的影响. 食品与发酵工业. 2024(03): 73-79 .
    2. 赵猛,丁子康,李欣悦,王晓梅,胡祖广,张忠山. 低分子量坛紫菜多糖纳米硒的制备、表征及其体外抗氧化活性. 食品工业科技. 2024(23): 170-178 . 本站查看
    3. 向东,朱玉昌,周大寨,李爽. 含硒活性物质研发技术进展. 山东化工. 2023(05): 66-69+77 .
    4. 王鑫,周卓,王峙力,修伟业,罗钰,马永强. 硒化甜玉米芯多糖对非酶糖基化的抑制作用. 食品工业科技. 2023(19): 17-23 . 本站查看
    5. 徐孝楠,马浩迪,续炎,李璇,覃智,权春善,张丽影. 耐硒海洋菌株的筛选、鉴定及其产纳米硒的抗菌活性. 食品工业科技. 2023(24): 152-158 . 本站查看
    6. 陈博文,陈建平,黄文浩,钟赛意,李瑞,宋兵兵,刘晓菲,汪卓. 岩藻多糖纳米硒的制备及其抑制肿瘤细胞增殖的研究. 天然产物研究与开发. 2023(12): 2117-2126 .
    7. 向文杰,殷彩桥,黄慧,陈婷. 硒及硒化合物对食管癌作用机制研究进展. 社区医学杂志. 2022(22): 1295-1300 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (206) PDF downloads (19) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return