YANG Aifu, WAN Chao, LIU Xuehua, et al. Establishment of TaqMan Real-time PCR Method for Detection of Wild Rice Derived Ingredients[J]. Science and Technology of Food Industry, 2022, 43(21): 344−349. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020035.
Citation: YANG Aifu, WAN Chao, LIU Xuehua, et al. Establishment of TaqMan Real-time PCR Method for Detection of Wild Rice Derived Ingredients[J]. Science and Technology of Food Industry, 2022, 43(21): 344−349. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020035.

Establishment of TaqMan Real-time PCR Method for Detection of Wild Rice Derived Ingredients

More Information
  • Received Date: February 10, 2022
  • Available Online: August 21, 2022
  • In this study, a TaqMan real-time PCR method for rapid detection of wild rice in foods was established. Specific primers and probes were designed according to conserved sequence of internal transcribed space (ITS) gene of Z. latifolia, Z. aquatica, Z. palustris and Z. texana to test the target gene fragment in the samples, and then species-specific detection, sensitivity detection and practical application detection were carried out. Results showed that this real-time PCR method had strong specificity, only showed specific amplification curves for wild rice genomic DNA, and there was no amplification curve for other grains, animal and plant materials. The limit of detection was 0.001 ng/μL genomic DNA or 0.01% (W/W) wild rice powder per reaction. The feasibility of the method was further verified by detecting 100 samples of commercial imported wild rice, broken wild rice, coarse grain and rice flour. The wild rice ingredients were detected in 80 commercial imported wild rice and 5 broken wild rice samples. This method has the characteristics of strong specificity, high sensitivity, rapidity and high sufficiency, and is suitable for rapid identification of wild rice ingredients.
  • [1]
    程广燕, 王小虎, 郭燕枝, 等. 大食物理念下国家粮食安全保障需求与途径对策[J]. 中国农业科技导报,2017,19(9):1−7. [CHENG G Y, WANG X H, GUO Y Z, et al. National grain security assurance requirement, ways and countermeasures under concept of “Big Food”[J]. Journal of Agricultural Science and Technology,2017,19(9):1−7. doi: 10.13304/j.nykjdb.2017.0066
    [2]
    翟成凯, 张小强, 孙桂菊, 等. 中国菰米的营养成分及其蛋白质特性的研究[J]. 卫生研究,2000,29(6):375−378. [ZHAI C K, ZHANG X Q, SUN G J, et al. Study on nutrition composition and protein quality of Chinese wild rice[J]. Journal of Hygiene Research,2000,29(6):375−378. doi: 10.3969/j.issn.1000-8020.2000.06.020
    [3]
    赵军红, 翟成凯. 中国菰米及其营养保健价值[J]. 扬州大学烹饪学报,2013,30(1):34−38. [ZHAO J H, ZHAI C K. Nutrition and health value of Chinese wild rice[J]. Journal of Researches on Dietetic Science and Culture,2013,30(1):34−38.
    [4]
    翟成凯, 孙桂菊, 陆琮明, 等. 中国菰资源及其应用价值的研究[J]. 资源科学,2000,22(6):22−26. [ZHAI C K, SUN G J, LU Z M, et al. On Chinese Zinania L. resources and their utilization value[J]. Resources Science,2000,22(6):22−26. doi: 10.3321/j.issn:1007-7588.2000.06.005
    [5]
    YAN N, DU Y M, LIU X M, et al. Morphological characteristics, nutrients, and bioactive compounds of Zizania latifolia, and health benefits of its seeds[J]. Molecules,2018,23:1561−1576. doi: 10.3390/molecules23071561
    [6]
    QIU Y, LIU Q, BETA T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids[J]. Food Chemistry,2010,121:140−147. doi: 10.1016/j.foodchem.2009.12.021
    [7]
    ALADEDUNYE F, PRZYBYLSKI R, RUDZINSKA M, et al. γ-Oryzanols of North American wild rice (Zizania palustris)[J]. Journal of American Oil Chemistry Society,2013,90(8):1101−1109. doi: 10.1007/s11746-013-2252-x
    [8]
    SUMCZYNSKIA D, KOUBOVA E, ŠENKAROVA L, et al. Rice flakes produced from commercial wild rice: Chemical compositions, vitamin B compounds, mineral and trace element contents and their dietary intake evaluation[J]. Food Chemistry,2018,264:386−392. doi: 10.1016/j.foodchem.2018.05.061
    [9]
    ZHANG H, CAO P, AGELLON L B, et al. Wild rice (Zizania latifolia (Griseb) Turcz) improves the serum lipid profile and antioxidant status of rats fed with a high fat/cholesterol diet[J]. British Journal of Nutrition,2009,102:1723−1727. doi: 10.1017/S0007114509991036
    [10]
    HAN S F, ZHANG H, ZHAI C K. Protective potentials of wild rice (Zizania latifolia (Griseb) Turcz) against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats[J]. Food and Chemical Toxicology,2012,50:226−2269.
    [11]
    HOU X D, YAN N, DU Y M, et al. Consumption of wild rice (Zizania latifolia) prevents metabolic associated fatty liver disease through the modulation of the gut microbiota in mice model[J]. International Journal of Molecular Sciences,2020,21(15):5375−5389. doi: 10.3390/ijms21155375
    [12]
    HAN S F, ZHANG H, QIN L Q, et al. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet[J]. Nutrients,2013,5:552−564. doi: 10.3390/nu5020552
    [13]
    HAN S F, LIU Y, ZHANG H, et al. Effect of Chinese wild rice on insulin in resistance in rats induced by high-fat/cholesterol diets[J]. Acta Nutrimenta Sinica,2012,34:449−453.
    [14]
    SURENDIRAN G, ALSAIF M, KAPOURCHALI F R, et al. Nutritional constitutes and health benefits of wild rice (Zizania spp.)[J]. Nutrition Reviews,2014,72:227−236. doi: 10.1111/nure.12101
    [15]
    SURENDIRAN G, GOH C, LE K, et al. Wild rice (Zizania palustris L.) prevents atherogenesis in LDL receptor knockout mice[J]. Atherosclerosis,2013,230:284−292. doi: 10.1016/j.atherosclerosis.2013.07.042
    [16]
    MOGHADASIAN M H, ALSAIF M, LE K, et al. Combination effects of wild rice and phytosterols on prevention of atherosclerosis in LDL receptor knockout mice[J]. Journal of Nutritional Biochemistry,2016,33:128−135. doi: 10.1016/j.jnutbio.2016.03.015
    [17]
    QIU Y, LIU Q, BETA T. Antioxidant activity of commercial wild rice and identification of falconoid compounds in active fractions[J]. Journal of Agricultural and Food Chemistry,2009,57:7543−7551. doi: 10.1021/jf901074b
    [18]
    CHU M J, LIU X M, YAN N, et al. Partial purification, identification, and quantization of antioxidants from wild rice (Zizania latifolia)[J]. Molecules,2018,23(11):2782−2797. doi: 10.3390/molecules23112782
    [19]
    SUMCZYNSKIA D, KOTASKOVA E, ORSAVOVA J, et al. Contribution of individual phenolics to antioxidant activity and in vitro digestibility of wild rices (Zizania aquatica L.)[J]. Food Chemistry,2017,218:107−115. doi: 10.1016/j.foodchem.2016.09.060
    [20]
    MOGHADASIAN M H, ZHAO R, GHAZAWWI N, et al. Inhibitory effects of North American wild rice on monocyte adhesion and inflammatory modulators in low-density lipoprotein receptor-knockout mice[J]. Journal of Agricultural and Food Chemistry,2017,65:9054−9060. doi: 10.1021/acs.jafc.7b03216
    [21]
    LEE E J, YU M H, GARCIA C V, et al. Inhibitory effect of Zizania latifolia chloroform fraction on allergy-related mediator production in RBL-2H3 cells[J]. Food Science and Biotechnology,2017,26:481−487. doi: 10.1007/s10068-017-0066-6
    [22]
    WANG M, ZHU P, ZHAO S, et al. Characterization, antioxidant activity and immunomodulatory activity of polysaccharides from the swollen culms of Zizania latifolia[J]. International Journal of Biological Macromolecules,2017,95:809−817. doi: 10.1016/j.ijbiomac.2016.12.010
    [23]
    WANG M, ZHAO S, ZHU P, et al. Purification, characterization and immunomodulatory activity of water extractable polysaccharides from the swollen culms of Zizania latifolia[J]. International Journal of Biological Macromolecules,2018,107:882−890. doi: 10.1016/j.ijbiomac.2017.09.062
    [24]
    王惠梅, 谢小燕, 苏晓娜, 等. 中国菰资源研究现状及应用前景[J]. 植物遗传资源学报,2018,19(2):279−288. [WANG H M, XIE X Y, SU X N, et al. Current status and application prospect of Zinania latifolia (Griseb.) Turcz. exStapf in China[J]. Journal of Plant Genetic Resources,2018,19(2):279−288. doi: 10.13430/j.cnki.jpgr.2018.02.011
    [25]
    JIANG M X, ZHAI L J, YANG H, et al. Analysis of active components and proteomics of Chinese wild rice (Zizania latifolia (Griseb) Turcz) and Indica rice (Nagina22)[J]. Journal of Medical Food,2016,19:798−804. doi: 10.1089/jmf.2015.3612
    [26]
    中华人民共和国国家质量监督检验检疫总局. SN/T 4714-2016 DNA条形码数据库技术规范[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. SN/T 4714-2016 Technical specification for DNA barcodes database[S]. Beijing: Standards Press of China, 2017.
    [27]
    中华人民共和国国家质量监督检验检疫总局. SN/T 1204-2016 植物及其加工产品中转基因成分实时荧光PCR定性检验方法[S]. 北京: 中国标准出版社, 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. SN/T 1204-2016 Protocol of the real-time PCR method for detecting genetically modified plants and their derived products[S]. Beijing: Standards Press of China, 2016.
    [28]
    丁博群, 刘珊娜. 荧光定量PCR在食品快速检测中的应用[J]. 食品工业科技,2021,42(7):366−373. [DING Boqun, LIU Shanna. Application of real-time quantitative PCR technology in food rapid detection[J]. Science and Technology of Food Industry,2021,42(7):366−373.
    [29]
    国家市场监督管理总局中国国家标准化管理委员会. GB/T 19495.4-2018 转基因产品检测实时荧光定性聚合酶链式反应(PCR)检测方法[S]. 北京: 中国标准出版社, 2018.

    State Administration for Market Regulation/Standardization Administration of the People's Republic of China. GB/T 19495.4-2018 Detection of genetically modified organisms and derived products—Qualitative real-time polymerase chain reaction (PCR) methods[S]. Beijing: Standards Press of China, 2017.
    [30]
    国家市场监督管理总局中国国家标准化管理委员会. GB/T 38164-2019常见畜禽动物源性成分检测方法实时荧光PCR法[S]. 北京: 中国标准出版社, 2019.

    State Administration for Market Regulation/Standardization Administration of the People's Republic of China. GB/T 38164-2019 Identification of animal ingredient from common livestock and poultry—Real-time PCR methods[S]. Beijing: Standards Press of China, 2019.
    [31]
    中华人民共和国国家质量监督检验检疫总局. SN/T 4895-2017 出口食品级饮料中常见小浆果成分份检测方法[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. SN/T 4895-2017 Identification of ingredients from common small berry fruits in food and juice for export—Real-time PCR method[S]. Beijing: Standards Press of China, 2017.
    [32]
    中华人民共和国国家质量监督检验检疫总局. SN/T 3033-2018燕窝的分子生物学真伪鉴别方法实时荧光PCR法和双向电泳法[S]. 北京: 中国海关出版社, 2018.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. SN/T 3033-2018 Identification of edible bird’s nest product by molecular biological methods for export—Real-time PCR and 2DGE[S]. Beijing: China Customs Press, 2018.
    [33]
    中华人民共和国国家质量监督检验检疫总局. SN/T 3957-2014 冬虫夏草真伪鉴别实时荧光PCR方法 [S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. SN/T 3033-2018 Identification of Cordyceps sinensis (Berk.) Sacc.—Real-time PCR[S]. Beijing: Standards Press of China, 2018.
    [34]
    中华人民共和国国家质量监督检验检疫总局. SN/T 1870-2016 出口食品中食源性致病菌检测方法实时荧光PCR方法 [S]. 北京: 中国标准出版社, 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. SN/T 1870-2016 Method for the detection of pathogens in food for export—Real-time PCR method[S]. Beijing: Standards Press of China, 2016.
  • Related Articles

    [1]XU Li, ZHU Tiantian, JIN Ling, HUANG Yufang, MA Xiaohui, KANG Shuqi. Comprehensive Evaluation of Lilium davidii var. willmottiae (E. H. Wilson) Raffill Quality Based on Sensory Evaluation and Chemometrics[J]. Science and Technology of Food Industry, 2024, 45(18): 219-227. DOI: 10.13386/j.issn1002-0306.2023100110
    [2]CHEN Yueqing, NIU Po. Correlation Analysis of Sensory Evaluation and Texture Characteristics of Dried Kiwifruit of Different Varieties under Hot Air Drying[J]. Science and Technology of Food Industry, 2024, 45(17): 273-281. DOI: 10.13386/j.issn1002-0306.2023090156
    [3]DU Xin-mei, ZHAO Qian-cheng, LV Ke, LIU Jing-yi, CHENG Shao-feng, MA Yong-sheng. Comparison of Texture Determination Method and Correlation Analysis with Sensory Evaluation of 5 Kinds of Apple[J]. Science and Technology of Food Industry, 2020, 41(22): 240-246. DOI: 10.13386/j.issn1002-0306.2019090243
    [4]LI Guan-li, NIE Hui, SU Ke-zhen, LI Xiao-chun, HUANG Shuang-quan, WU Shu-jie, LUO Yang-he. Analysis of Volatile Flavor Substances of Chinese Water Chestnut in Different Steaming and Boiling Time Based on Sensory Evaluation and E-nose[J]. Science and Technology of Food Industry, 2020, 41(15): 1-7,14. DOI: 10.13386/j.issn1002-0306.2020.15.001
    [5]LEI Ding, QIN Dan. Application Progress of Sensory Evaluation in the Research of Soup[J]. Science and Technology of Food Industry, 2019, 40(14): 342-345,352. DOI: 10.13386/j.issn1002-0306.2019.14.056
    [6]LIU Min, TAN Shu-ming, ZHANG Hong-li, LIU Fang-hong, SUN Xiao-dong. Sensory quality analysis of rice based on fuzzy sensory evaluation[J]. Science and Technology of Food Industry, 2017, (21): 247-251. DOI: 10.13386/j.issn1002-0306.2017.21.049
    [7]BAO Gao-liang, LIU Ya-na, HAN Dong-jie, SUN Bao-zhong, ZHANG Li, XIE Peng, LI Hai-peng. Establishment of sensory evaluation system for frying of dry- cured yak meat based on fuzzy mathematics[J]. Science and Technology of Food Industry, 2016, (15): 287-293. DOI: 10.13386/j.issn1002-0306.2016.15.047
    [8]DU Ze- kun, LI Yu- zhu, ZHANG Jia- ming, XU Xue- bo, MA Bo- yuan, DU Peng. Study on the correlation between sensory evaluation and instrumental analysis for salted eggs texture[J]. Science and Technology of Food Industry, 2016, (01): 309-314. DOI: 10.13386/j.issn1002-0306.2016.01.053
    [9]ZHANG Qun, FU Fu-hua, WU Yue-hui, ZHU Ling-feng, SHAN Yang. Study on the correlation among appearance quality, nutritional quality and sensory evaluation of hybrid citrus varieties in Hunan[J]. Science and Technology of Food Industry, 2014, (23): 100-106. DOI: 10.13386/j.issn1002-0306.2014.23.011
    [10]WU Hao, LIU Yuan, GU Sai-qi, FU Na, CHEN Wei-hua, WANG Xi-chang. Category distinction of different surimis by electronic nose, electronic tongue and sensory evaluation[J]. Science and Technology of Food Industry, 2013, (18): 80-82. DOI: 10.13386/j.issn1002-0306.2013.18.045
  • Cited by

    Periodical cited type(7)

    1. 吴敏,黄娟,石桃雄,朱丽伟,邓娇,梁成刚,汪燕,刘飞,李荣,蔡芳,陈庆富. 应用CRISPR/Cas9基因编辑技术获得高直链淀粉水稻种质. 福建农业学报. 2024(01): 17-24 .
    2. 郭增辉,韩洁楠,李冉,上官小川,刘仕缘,刘德斌,徐晶宇,李明顺,李新海. Ae1-5180高直链淀粉玉米近等基因系农艺性状与子粒品质分析. 玉米科学. 2024(04): 31-38 .
    3. 吴建国,洪雁,顾正彪,程力,李兆丰,李才明,班宵逢. OSA改性高直链玉米淀粉复合疏水膜的制备及性能研究. 中国塑料. 2024(10): 23-28 .
    4. 刘雨霏,罗慧琳,陈响,潘云云,申雨韩,张浩宇,姚长洪. 高直链淀粉的生物合成和应用研究进展. 化学与生物工程. 2023(02): 1-8+15 .
    5. 陈书明,张宁. 低GI面条的研制及其体外淀粉消化特性研究. 中国食品添加剂. 2023(05): 119-132 .
    6. 王婷婷,康志敏,张康逸,何梦影,张国治. 内源性成分对低GI挂面消化特性的影响. 食品工业科技. 2023(12): 1-9 . 本站查看
    7. 程伟琴,杨鹏飞,冯明,霍二福,倪中海. 高直链淀粉/聚乳酸接枝共聚物的制备及性能研究. 塑料科技. 2023(10): 77-80 .

    Other cited types(18)

Catalog

    Article Metrics

    Article views (217) PDF downloads (17) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return