ZHAO Ruoqi, CHENG Yongxia, SONG Lianjun, et al. Advances in Extraction and Functional Studies of Raffinose Family Oligosaccharides[J]. Science and Technology of Food Industry, 2022, 43(23): 457−466. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020015.
Citation: ZHAO Ruoqi, CHENG Yongxia, SONG Lianjun, et al. Advances in Extraction and Functional Studies of Raffinose Family Oligosaccharides[J]. Science and Technology of Food Industry, 2022, 43(23): 457−466. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020015.

Advances in Extraction and Functional Studies of Raffinose Family Oligosaccharides

More Information
  • Received Date: February 09, 2022
  • Available Online: October 06, 2022
  • Raffinose family oligosaccharides (RFOs) are 1, 6-galactosyl extensions of α-sucrose, and are plant non-structural carbohydrates, mainly including raffinose, stachyose and verbasose, which are commonly found in the plant kingdom middle. Among them, it is more common in legumes, Rehmannia glutinosa, Stachys japonica Miq., Stachys sieboldii and other plants, and belongs to functional oligosaccharides. RFOs have great potential in functional food development due to their active functions of regulating intestinal flora, preventing inflammatory bowel disease, protecting liver and lowering blood sugar. This article mainly reviews the sources of RFOs, the current research on the relevant technologies of extraction, separation and purification of RFOs, and the function of RFOs, expecting to provide some theoretical reference for the development and utilization of RFOs and enable them to be better applied in functional food.
  • [1]
    ELANGO D, RAJENDRAN K, VAN D L L, et al. Raffinose family oligosaccharides: Friend or foe for human and plant health?[J]. Front Plant Sci,2022,13:829118. doi: 10.3389/fpls.2022.829118
    [2]
    GULEWICZ P, CIESIOLKA D, FRIASR J, et al. Simple method of isolation and purification of alpha-galactosides from legumes[J]. Journal of Agricultural and Food Chemistry,2000,48(8):3120−3123. doi: 10.1021/jf000210v
    [3]
    CRISTINA M V, JUANA F, CONCEPCION V V. Alpha-galactosides: Antinutritional factors or functional ingredients?[J]. Critical Reviews in Food Science and Nutrition,2008,48(4):301−316. doi: 10.1080/10408390701326243
    [4]
    ZHANG J, SONG G, MEI Y, et al. Present status on removal of raff inose family oligosaccharides: A review[J]. Czech Journal of Food Sciences,2019,37(No.3):141−154. doi: 10.17221/472/2016-CJFS
    [5]
    韦玉霞. 园艺作物中棉籽糖系列寡糖(RFO)研究进展[J]. 园艺与种苗,2017(9):46−48. [WEI Y X. Research progess of raffinose family oligosaccharides (RFO) in horticultural crops[J]. Gardening and Planting,2017(9):46−48.
    [6]
    PETERBAUER T, RICHTER A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds[J]. Seed Science Research,2001,11(3):185−197.
    [7]
    MARÍA A, MARTÍN C, MARÍA F D, et al. Influence of germination on the soluble carbohydrates and dietary fibre fractions in non-conventional legumes[J]. Food Chemistry,2007,107(3):1045−1052.
    [8]
    ELSAYEDl A I, RAFUDEEN M S, GOLLDACK D. Physiological aspects of raffinose family oligosaccharides in plants: Protection against abiotic stress[J]. Plant Biology,2014,16(1):1−8. doi: 10.1111/plb.12053
    [9]
    李涛. 棉籽糖系列寡糖(RFOs)在玉米与拟南芥植株抗旱及种子活力中的功能研究[D]. 杨凌: 西北农林科技大学, 2017.

    LI T. The function of raffinose family oligosaccharides in plant drought stress tolerance and seed vigor of maize andarabidopsis[D]. Yangling: Northwest A & F University, 2017.
    [10]
    GU H, LU M, ZHANG Z, et al. Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves[J]. Journal of Plant Physiology,2018,224−225:112−120. doi: 10.1016/j.jplph.2018.03.012
    [11]
    庞椿朋. 棉籽糖家族寡糖提高番茄低温抗性的作用研究[D]. 沈阳: 沈阳农业大学, 2019: 12−34.

    PANG C P. Study on the effcect of raffinose family oilgosaccharides in low temperature resistance of tomato[D]. Shenyang: Shenyang Agricultural University, 2019: 12−34.
    [12]
    SONAL S,  SRITAMA M, PAPRI B, et al. Significance of galactinol and raffinose family oilgosaccharide synthesis in plants[J]. Frontiers in Plant Science,2015,6:656.
    [13]
    RAGHAVENDHAR R K, JOHN W F, DEVANAND L L. Researchers from louisiana state university describe findings in food science [Determination of soluble Mono, Di, and oligosaccharide content in 23 dry beans (Phaseolus vulgaris L.)][J]. Agriculture Week,2020(68):6412−6419.
    [14]
    陈凌霄, 吴定涛, 赵静, 等. 高效液相色谱联用电喷雾检测器分析不同植物中棉籽糖系列寡糖[J]. 药物分析杂志,2018,38(1):34−40. [CHEN L X, WU D T, ZHAO J, et al. Analysis of raffinose family oligosaccharides in selected plants using high-performance liquid chromatography with charged aerosol detector[J]. Journal of Pharmaceutical Analysis,2018,38(1):34−40.
    [15]
    王智荣, 崔春, 赵谋明. HPLC-ELSD测定草石蚕低聚糖含量的研究[J]. 中国调味品,2017,42(6):114−117. [WANG Z R, CUI C, ZHAO M M. Research on determination of oligosaccharide inStachys sieboldii Miq by HPLC-ELSD[J]. Chinese Condiment,2017,42(6):114−117. doi: 10.3969/j.issn.1000-9973.2017.06.024
    [16]
    XU L, ZHENG Z, LI H, et al. Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds[J]. Industrial Crops & Products,2017,107:546−557.
    [17]
    郝敬虹, 李天来, 孟思达, 等. 夜间低温对薄皮甜瓜果实糖积累及代谢相关酶活性的影响[J]. 中国农业科学,2009,42(10):3592−3599. [HAO J H, LI T L, MENG S D, et al. Effects of night low temperature on sugar accumulation and sugar-metabolizing enzyme activities in melon fruit[J]. Agricultural Sciences in China,2009,42(10):3592−3599. doi: 10.3864/j.issn.0578-1752.2009.10.0026
    [18]
    陆慢. 黄瓜低温胁迫与恢复过程中水苏糖合成酶与α-半乳糖苷酶在RFOs代谢中的作用[D]. 扬州: 扬州大学, 2018: 3−18.

    LU M. Role of stachyose synthetase and α-galactosidase in RFOs metabolism during cold stress and recovery in cucumber[D]. Yangzhou: Yangzhou University, 2018: 3−18.
    [19]
    RUZICA J M, SLOBODANKA K, ELEONORA W. Application of ultrasound for enhanced extraction of prebiotic oli gosaccharides from selected fruits and vegetables[J]. Ultrasonics Sonochemistry,2015,22:446−453. doi: 10.1016/j.ultsonch.2014.07.016
    [20]
    ASLANIDIS C, SCHMID K, SCHMITT R. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli[J]. Journal of Bacteriology,1989,171(12):6753−6763. doi: 10.1128/jb.171.12.6753-6763.1989
    [21]
    陈静, 云志. 棉籽糖制备及分析检测方法[J]. 粮油加工,2009(6):127−130. [CHEN J, YUN Z. Method for preparation and analysis of raffinose[J]. Grain and Oil Processing,2009(6):127−130.
    [22]
    BAIK S H. Synthesis of raffinose by fungal α-galacotosidase from Absidia corymbifera[J]. Food Science and Biotechnology,2010,19(1):83−87. doi: 10.1007/s10068-010-0012-3
    [23]
    PETERBAUER T, MUCHA J, MACH L, et al. Chain elongation of raffinose in pea seeds. Isolation, characterizationand molecular cloning of mutifunctional enzyme catalyzing the synthesis of stachyose and verbascose[J]. The Journal of Biological Chemistry,2002,277(1):194−200. doi: 10.1074/jbc.M109734200
    [24]
    钱艳艳, 王丽, 文春南, 等. 鲜地黄低聚糖纯化及其理化特性和抗氧化活性研究[J]. 天然产物研究与开发,2021,33(9):1470−1477. [QIAN Y Y, WANG L, WEN C N, et al. Purification, physicochemical property and antioxidant activity analysis of oligosaccharides from the fresh roots of Rehmannia glutinosa Libosch[J]. Natural product research and development,2021,33(9):1470−1477. doi: 10.16333/j.1001-6880.2021.9.004
    [25]
    卢旭, 张帅, 林姗, 等. 莲子低聚糖提取工艺优化及其组分分析[J]. 热带作物学报,2015,36(4):813−820. [LU X, ZHANG S, LIN S, et al. Optimization of extraction process and composition analysis of lotus seed oligosaccharides[J]. Journal of Tropical Crops,2015,36(4):813−820. doi: 10.3969/j.issn.1000-2561.2015.04.029
    [26]
    XIANG X, YANG L, HUA S, et al. Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L.) seeds by high performance liquid chromatography[J]. Journal of Food Chemistry,2008,111:215−219. doi: 10.1016/j.foodchem.2008.03.039
    [27]
    WAN R Z, KIT L C, WU D T, et al. Preparation and purification of raffinose family oligosaccharides from rehmanni a glutinosa libosch. by fast protein liquid chromatography coupled with refractive index detection[J]. Separation and Purification Technology,2014,138:98−103. doi: 10.1016/j.seppur.2014.10.001
    [28]
    栾凯雯, 贺梦瑶, 刘佳欣, 等. 设计优化微波辅助法提取草石蚕中水苏糖[J]. 食品工业,2022,43(2):75−78. [LUAN K W, HE M Y, LIU J X, et al. Box-behnken design and optimization of microwave-assisted extraction of stachyose from silkworm[J]. The Food Industry,2022,43(2):75−78.
    [29]
    SOLARTE D A, RUIZ M A I, CHITO T D M, et al. Microwave assisted extraction of bioactive carbohydrates fromdifferent morphological parts of alfalfa (Medicago sativa L.)[J]. Foods,2021,10(2):346. doi: 10.3390/foods10020346
    [30]
    周泉城, 申德超, 区颖刚. 超声波辅助提取经膨化大豆粕中低聚糖工艺[J]. 农业工程学报,2008(5):245−249. [ZHOU Q C, SHEN D C, QU Y G. Ultrasonic assisted extraction of oligosaccharides from extruded soybean meal[J]. Transactions of the Chinese Society of Agricultural Engineering,2008(5):245−249. doi: 10.3321/j.issn:1002-6819.2008.05.055
    [31]
    ANH L B, OKITSU K, IMAMURA K, et al. Ultrasound assisted cascade extraction of oil, vitamin E, and saccharides from roselle (Hibiscus sabdariffa L.) seeds[J]. Analytical Sciences,2020,36(9):1091−1097. doi: 10.2116/analsci.20P073
    [32]
    GUO Z, ZHAO B, LI H, et al. Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.)[J]. Innovative Food Science and Emerging Technologies,2019,54:51−63. doi: 10.1016/j.ifset.2019.03.009
    [33]
    苏娣. 绿豆中毛蕊花糖的分离纯化、肠道益生和免疫调节活性研究[D]. 南京: 南京农业大学, 2013: 27−46.

    SU D. Extraction, purification, probiotic properties and immunoregulation activity of verbascose from mung bean[D]. Nanjing: Nanjing Agricultural University, 2013: 27−46.
    [34]
    崔希庆. 大豆糖蜜中功能性低聚糖的纯化分离[D]. 哈尔滨: 东北农业大学, 2010: 44−53.

    CUI X Q. Purfication and separation of functional oligosaccharides from soybean molasses[D]. Harbin: Northeast Agricultural University, 2010: 44−53.
    [35]
    马璇. 草石蚕水苏糖的提取纯化工艺研究[D]. 沈阳: 沈阳化工大学, 2019: 25−39.

    MA X. Study on extraction and purification process of stachyose in Stachys sieboldii Miq[D]. Shenyang: Shenyang University of Chenical Technology, 2019: 25−39.
    [36]
    田原, 刘玉兰, 彭团儿, 等. 大孔离子交换树脂对大豆糖蜜脱色效果的研究[J]. 中国油脂,2009,34(4):42−46. [TIAN Y, LIU Y L, PENG T E, et al. Decoloration effect of macroporous ion exchange resin on soybean molasses[J]. China Oils and Fats,2009,34(4):42−46. doi: 10.3321/j.issn:1003-7969.2009.04.012
    [37]
    周毅. 现代分离提取技术在食品中的应用[J]. 湖北农机化,2015(2):48−50. [ZHOU Y. Application of modern separation and extraction technology in food[J]. Hubei Agricultural Mechanization,2015(2):48−50.
    [38]
    张敏, 史宝利. 膜分离技术在水苏糖提取中的应用[J]. 食品工业,2019,40(10):102−106. [ZHANG M, SHI B L. Application of membrane separation technology on the extraction of stachyose[J]. The Food Industry,2019,40(10):102−106.
    [39]
    王兴国, 刘元法, 金青哲, 等. 膜分离技术在棉籽糖糖液纯化中的应用研究[J]. 粮油加工与食品机械,2005(6):50−53. [WANG X G, LIU Y F, JIN Q Z, et al. Application of membrane separation technology in the purification of raffinose sugar solution[J]. Grain and Oil Processing and Food Machinery,2005(6):50−53.
    [40]
    刘玉兰, 田原, 鲍丹青. 大豆糖蜜发酵制备功能性大豆低聚糖的研究[J]. 河南工业大学学报(自然科学版),2010,31(2):1−5. [LIU Y L, TIAN Y, BAO D Q. Preparation of functional soybean oligosaccharide from soybean molasses by fermentation[J]. Journal of Henan University of Technology (Natural Science Edition),2010,31(2):1−5. doi: 10.16433/j.cnki.issn1673-2383.2010.02.006
    [41]
    崔希庆, 刘畅, 董银卯, 等. 发酵法分离提纯大豆糖蜜中低聚糖的研究[J]. 食品科学,2009,30(23):343−346. [CUI X Q, LIU C, DONG Y M, et al. Isolation and purification of oligosaccharides from soybean molasses through fermentation[J]. Food Science,2009,30(23):343−346. doi: 10.3321/j.issn:1002-6630.2009.23.078
    [42]
    徐川辉. 功能性纤维通过调节肠道微生物改善机体胰岛素敏感性作用的研究[D]. 武汉: 华中农业大学, 2020: 36−37.

    XU C H. Functional fiber increases insulin sensitivity by modulating intestinal microbiota[D]. Wuhan: Huazhong Agricultural University, 2020: 36−37.
    [43]
    XI M, ZHAO S, GE W, et al. Effects of stachyose on the intestinal microbiota and barrier in antibiotic-treated mice[J]. Journal of Functional Foods,2021:83.
    [44]
    姜宝森. 棉籽糖对小鼠肠道总抗氧化水平丙二醛含量和肠道菌群的影响[J]. 当代畜牧,2017(6):31−33. [JIANG B S. Effects of raffinose on intestinal total antioxidant capacity, malondialdehyde contents and intestinal florain mice[J]. Modern Animal Husbandry,2017(6):31−33.
    [45]
    SARINA P, SONG J, ZHANG C, et al. Intra amniotic administration of raffinose and stachyose affects the intestinal brush border functionality and alters gut microflora populations[J]. Nutrients,2017,9(3):304. doi: 10.3390/nu9030304
    [46]
    LUSTER A D, ALON R, VON A U H. Immue cell migration in inflammation: Present and future therapeutic targets[J]. Nature Immunology,2005,6(12):1182−90. doi: 10.1038/ni1275
    [47]
    陈钇汐. 木寡糖改善小鼠急性炎症性肠病的作用及机制的初步研究[D]. 长春: 东北师范大学, 2018: 1−17.

    CHEN Y X. Functional and mechanistic investigation of alleviation effect from xylo-oligosaccharide on acute inflam, matory bowel disease in mice[D]. Changchun: Northeast Normal University, 2018: 1−17.
    [48]
    DAI Z, SU D, ZHANG Y, et al. Immunomodulatory activity in vitro and in vivo of verbascose from mung beans (Phaseolus aureus)[J]. Journal of Agricultural and Food Chemistry,2014,62(44):10727−10735. doi: 10.1021/jf503510h
    [49]
    HE L, ZHANG F, JIAN Z, et al. Stachyose modulates gut microbiota and alleviates dextran sulfate sodium-inducedacute colitis in mice[J]. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association,2022,26(3):153−159.
    [50]
    YU Z-T, NANTHAKUMAR N N, NEWBURG D S. The human milk oligosaccharide 2′-fucosyllactose quenches campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa[J]. The Journal of Nutrition,2016,146(10):1980−1990. doi: 10.3945/jn.116.230706
    [51]
    CHEN Y, LI R, SHI M,  et al. Demethyleneberberine alleviates inflammatory bowel disease in mice through regulating NF-κB signaling and T-helper cell homeostasis[J]. Inflammation Research,2017,66(2):187−196. doi: 10.1007/s00011-016-1005-3
    [52]
    ARAFA E A, MOHAMED W R, ZAHER D M, et al. Gliclazide attenuates acetic acid-induced colitis via the modulation of PPAR gamma, NF-kappa B and MAPK signaling pathways[J]. Toxicology and Applied Pharmacology,2020,391:114919. doi: 10.1016/j.taap.2020.114919
    [53]
    FUENTES E, GUZMÁN J L, MOORE CARRASCO R, et al. Role of PPARs in inflammatory processes associatedwith metabolic syndrome (review)[J]. Molecular Medicine Reports,2013,8(6):1611−1116. doi: 10.3892/mmr.2013.1714
    [54]
    WANG W, LIU P, HAO C, et al. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways[J]. Scientific Reports,2017,7(1):44252. doi: 10.1038/srep44252
    [55]
    HE J, ZHANG P, SHEN L, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J]. International Journal of Molecular Sciences,2020,21(17):6356. doi: 10.3390/ijms21176356
    [56]
    QI Y, LI S, QU D, et al. Effects of ginseng neutral polysaccharide on gut microbiota in antibiotic-associated diarrhea mice[J]. China Journal of Chinese Materia Medica,2019,44(4):811−818.
    [57]
    ZHAO Z, LIU W, PI X. In vitro effects of stachyose on the human gut microbiota[J]. Starch-Stärke, 2021, 73(7−8).
    [58]
    LI W, HUANG D, GAO A, et al. Stachyose increases absorption and hepatoprotective effect of tea polyphenols in high fructose-fed mice[J]. Molecular Nutrition & Food Research,2016,60(3):502−510.
    [59]
    ZHANG R, ZHAO Y, SUN Y, et al. Isolation, characterization, and hepatoprotective effects of the raffinose family oligosaccharides from Rehmannia glutinosa Libosch[J]. Journal of Agricultural and Food Chemistry,2013,61(32):7786−7793. doi: 10.1021/jf4018492
    [60]
    WU Y, LI W, LU Y, et al. Stachyose combined with tea polyphenols mitigated metabolic disorders in high fructose diet-fed mice as studied by GC-MS metabolomics approach[J]. CyTA-Journal of Food,2018,16(1):516−524. doi: 10.1080/19476337.2017.1420101
    [61]
    MAEGAWA K, KOYAMA H, FUKIYA S, et al. Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats[J]. British Journal of Nutrition,2021:1−26.
    [62]
    CHEN M, ZHU X, RAN L, et al. Trimethylamine-N-oxide induces vascular inflammation by activating the inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J]. Journal of the American Heart Association,2017,6(11):e002238. doi: 10.1161/JAHA.117.002238
    [63]
    GENG J, YANG C, WANG B, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/NK pathway[J]. Biomedicine & Pharmacotherapy,2018,97:941−947.
    [64]
    SUN X, JIAO X, MA Y, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in humanumbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome[J]. Biochemical and Biophysical Research Communications,2016,481(1-2):63−70. doi: 10.1016/j.bbrc.2016.11.017
    [65]
    LIU G, BEI J, LIANG L, et al. Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats[J]. Molecular Nutrition & Food Research,2018,62(6):1700954.
    [66]
    LIANG L, LIU G, YU G, et al. Urinary metabolomics analysis reveals the anti-diabetic effect of stachyose in high-fat diet/streptozotocin-induced type 2 diabetic rats[J]. Carbohydrate Polymers,2019,229:115534.
    [67]
    LI L Z, TAO S B, MA L, et al. Roles of short-chain fatty acids in kidney diseases[J]. Chinese Medical Journal,2019,132(10):1228−1232.
    [68]
    SAAD M J A, SANTOS A, PRADA P O. Linking gut microbiota and inflammation to obesity and insulin resistance[J]. Physiology (Bethesda, Md.),2016,31(4):283−293.
    [69]
    李嘉鑫, 杨宇峰, 石岩. 从胆汁酸核受体FXR探讨土壅木郁理论与2型糖尿病胰岛素抵抗的关系[J]. 北京中医药大学学报,2022,45(1):81−86. [LI J X, YANG Y F, SHI Y. Exploration of the correlation between the theory of earth stagnation and wood depression and insulin resistance in type 2 diabetes mellitus associated with the nuclear bile acid receptor FXR[J]. Liaoning University of Traditional Chinese Medicine,2022,45(1):81−86. doi: 10.3969/j.issn.1006-2157.2022.01.012
    [70]
    李亚楠. 肠道菌群在2型糖尿病发生发展中的作用及对糖代谢的影响[D]. 苏州: 苏州大学, 2020: 1−3.

    LI Y N. Role of intestinal flora in the development of type 2 diabetes mellitus and its effect on glucose metabolism[D]. Suzhou: Suzhou University, 2020: 1−3.
    [71]
    ZHENG J, YUAN X, CHENG G, et al. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice[J]. Carbohydrate Polymers,2018,190:77−86. doi: 10.1016/j.carbpol.2018.02.058
    [72]
    周晓莉, 许喜林. 大豆低聚糖的生理功能及应用[C]. “健康中国2030·健康食品的创新与发展”暨2019年广东省食品 学会学术年会论文集. [出版者不详]. 2019: 25−28.

    ZHOU X L, XU X L. The physiologica funtion and application of soybean oligosaccharides[C]. "Healthy China 2030 Innovation and Development of Healthy Food" and the 2019 Guangdong Food Association Annual Conference Proceedings. [Publisher unknown]. 2019: 25−28.
    [73]
    WWAVER C M, MARTIN B R, NAKATSU C H, et al. Galactooligosaccharides improve mineral absorption and boneproperties in growing rats through gut fermentation[J]. Journal of Agricultural and Food Chemistry,2011,59(12):6501−6510. doi: 10.1021/jf2009777
    [74]
    刘力, 张炜, 徐德生, 等. 生地低聚糖对慢性阻塞性肺疾病大鼠外周气道病理变化的影响[A]. 中华中医药学会、世界中医药学会联合会中药专业委员会、北京药师协会.

    LIU L, ZHANG W, XU D S, et al. Effects of biooligosaccharide on pathological changes of peripheral airway in rats with chronic obstructive pulmonary disease[A]. China Association of Traditional Chinese Medicine, Professional Committee of Traditional Chinese Medicine of World Federation of Chinese Medicine Societies, Beijing Pharmacists Association.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (455) PDF downloads (45) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return