YANG Zhiwei, JIANG Lin. Effects of β-Glucan Glycosylation on Functional Properties and Antioxidant Activity of Naked Oat Protein[J]. Science and Technology of Food Industry, 2022, 43(22): 68−75. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010265.
Citation: YANG Zhiwei, JIANG Lin. Effects of β-Glucan Glycosylation on Functional Properties and Antioxidant Activity of Naked Oat Protein[J]. Science and Technology of Food Industry, 2022, 43(22): 68−75. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010265.

Effects of β-Glucan Glycosylation on Functional Properties and Antioxidant Activity of Naked Oat Protein

More Information
  • Received Date: February 09, 2022
  • Available Online: September 11, 2022
  • Naked oat protein and β-glucan were used to conduct glycosylation reaction. The functional indexes of naked oat protein before and after glycosylation were determined. The formation of conjugates in the process of glycosylation was observed, the mechanism of glycosylation modification was analyzed, and in vitro antioxidant experiment was carried out. The results showed that the solubility of glycosylated naked oat protein was improved at pH5, 7, 9 and 11, and increased by 3.06 times at pH5. The foaming property of glycosylated naked oat protein increased significantly in the range of pH3~11, and increased by 5 times at pH5. The emulsifying property and emulsifying stability of glycosylated naked oat protein were increased by 2.48 and 2.59 times at pH5 respectively. SDS-PAGE gel electrophoresis revealed that glycosylation resulted in the formation of macromolecules. Fluorescence spectrum analysis showed that the environment of the system changed to hydrophilicity during the glycosylation reaction. Infrared spectrum analysis reflected the covalent binding between protein and sugar molecules. It was observed by circular dichroism that glycosylation changed the secondary structure of the protein. The DPPH· scavenging rate of glycosylated naked oat protein was 2.13 times higher than that of native protein, when the concentration was 10 mg/mL. The ABTS+· scavenging rate of glycosylated naked oat protein was 2.09 times higher than that of native protein, when the concentration was 2.5 mg/mL. The glycosylation of naked oat protein and β-glucan changed the structure of the protein, the conjugates turned to hydrophilicity, the functionality was improved, and the antioxidant activity was stronger than that of the native protein.
  • [1]
    BIEL W, JACYNO E, KAWECKA M. Chemical composition of hulled, dehulled and naked oat grains[J]. South African Journal of Animal Science,2014,44(2):189−197. doi: 10.4314/sajas.v44i2.12
    [2]
    NIETO-NIETO T V, WANG Y X, OZIMEK L, et al. Effects of partial hydrolysis on structure and gelling properties of oat globular proteins[J]. Food Reserach International,2014,55:418−425. doi: 10.1016/j.foodres.2013.11.038
    [3]
    KOSIERADZKA I, FABIJANSKA M. Comparison of the nutritive value of naked and husked oat protein with wheat and maize[J]. Journal of Animal and Feed Sciences,2001,10(Suppl.2):309−314.
    [4]
    张蓓, 郭晓娜, 朱科学, 等. 燕麦蛋白糖基化改性研究[J]. 中国粮油学报,2016,31(6):41−46. [ZHANG B, GUO X N, ZHU K X, et al. Glycation reaction of oat protein isolate[J]. Journal of the Chinese Cereals and Oils Association,2016,31(6):41−46. doi: 10.3969/j.issn.1003-0174.2016.06.008
    [5]
    田思萌, 孔祥菊. 燕麦β-葡聚糖的分子结构特点及其生物学功能研究进展[J]. 中国调味品,2021,46(12):180−183. [TIAN S M, KONG X J. Research progress on molecular structure and biological functions of oat β-glucan[J]. China Condiment,2021,46(12):180−183. doi: 10.3969/j.issn.1000-9973.2021.12.034
    [6]
    金毅明, 李平利, 赵雅萍, 等. β-葡聚糖研究进展及其在健康产业中的开发潜能[J]. 食品与药品,2018,20(5):377−381. [JIN Y M, LI P L, ZHAO Y P, et al. Research progress on β-glucan and its development potential in health industry[J]. Food and Drug,2018,20(5):377−381. doi: 10.3969/j.issn.1672-979X.2018.05.016
    [7]
    孟凡迪, 白银, 王中江, 等. 空化射流促糖基化对大豆蛋白结构与功能性的影响[J]. 食品科学,2020,41(15):171−176. [MENG F D, BAI Y, WANG Z J, et al. Effect of cavitation jet-assisted glycosylation on structure and function of soy protein[J]. Food Science,2020,41(15):171−176. doi: 10.7506/spkx1002-6630-20190711-169
    [8]
    VHANGANI L N, VAN WYK J. Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system[J]. Food Chemistry,2016,208:301−308. doi: 10.1016/j.foodchem.2016.03.100
    [9]
    蒋琳, 杨志伟. 响应面优化超声辅助裸燕麦蛋白/β-葡聚糖糖基化改性工艺[J]. 食品工业科技,2020,41(2):170−176. [JIANG L, YANG Z W. Optimization of glycosylation modification process of ultrasound-assisted naked oat protein/β-glucan by response surface methodology[J]. Science and Technology of Food Industry,2020,41(2):170−176.
    [10]
    王亚娟, 杨人元, 李淳雄, 等. 汉麻籽分离蛋白的提取及功能特性研究[J]. 中国食品添加剂,2020,31(12):84−90. [WANG Y J, YANG R Y, LI C X, et al. Study on extraction and functional properties of hempseed protein isolate[J]. China Food Additives,2020,31(12):84−90. doi: 10.19804/j.issn1006-2513.2020.12.014
    [11]
    张颖, 张光艳, 王宇翔, 等. 不同花源蜂蜜蛋白质组分及提取方法的比较[J]. 食品与发酵工业,2019,45(14):91−96. [ZHANG Y, ZHANG G Y, WANG Y X, et al. Comparison of protein composition and extraction methods between honey from different floral origins[J]. Food and Fermentation Industries,2019,45(14):91−96. doi: 10.13995/j.cnki.11-1802/ts.019746
    [12]
    陈爽, 王小丹, 李瑞, 等. VD3与大豆分离蛋白相互作用的多重光谱分析与计算[J]. 食品科学,2019,40(23):8−13. [CHEN S, WANG X D, LI R, et al. Multiple spectroscopy analysis and calculation of the interaction between vitamin D3 and soy protein isolate[J]. Food Science,2019,40(23):8−13. doi: 10.7506/spkx1002-6630-20181112-122
    [13]
    赵城彬, 许秀颖, 刘景圣, 等. 超声预处理对大豆分离蛋白糖基化复合物酸诱导凝胶性质的影响[J]. 食品科学,2019,40(1):123−129. [ZHAO C B, XU X Y, LIU J S, et al. Effect of ultrasonic pretreatment on acid-induced gel properties of soybean protein isolate glycoconjugates[J]. Food Science,2019,40(1):123−129. doi: 10.7506/spkx1002-6630-20171210-119
    [14]
    CHAIITTIANAN R, CHAYOPAS P, RATTANATHONGKOM A, et al. Anti-obesity potential of corn silks: Relationships of phytochemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction[J]. Journal of Functional Foods,2016,23:497−510. doi: 10.1016/j.jff.2016.03.010
    [15]
    ZUO A R, DONG H H, YU Y Y, et al. The antityrosinase andantioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups[J]. Chinese Medicine,2018,13:51. doi: 10.1186/s13020-018-0206-9
    [16]
    PAN Y, JIN H J, YANG S L, et al. Changes of volatile organic compounds and bioactivity of Alternaria brassicae GL07 in different ages[J]. Journal of Basic Microbiology,2019,59(7):713−722. doi: 10.1002/jobm.201800729
    [17]
    YU H, SEOW Y X, ONG P K C, et al. Kinetic study of high-intensity ultrasound-assisted Maillard reaction in a model system of D-glucose and glycine[J]. Food Chemistry,2018,269:628−637. doi: 10.1016/j.foodchem.2018.07.053
    [18]
    FU X, LIU Q, TANG C Q, et al. Study on structural, rheological and foaming properties of ovalbumin by ultrasound-assisted glycation with xylose[J]. Ultrasonics Sonochemistry,2019,58:104644. doi: 10.1016/j.ultsonch.2019.104644
    [19]
    刘俊. 超声波辅助糖基化修饰对蛋白质功能性质的影响及机制初探[D]. 南昌: 江西师范大学, 2018

    LIU J. Effect and mechanism of ultrasonic assisted with glycation on the functional properties of proteins[D]. Nanchang: Jiangxi Normal University, 2018.
    [20]
    张燕鹏, 祝贤彬, 齐玉堂, 等. 菜籽蛋白糖基化修饰及其功能性质的研究[J]. 食品工业,2017,38(1):156−160. [ZHANG Y P, ZHU X B, QI Y T, et al. The study on glycosylation and functional properties of rapeseed protein[J]. The Food Industry,2017,38(1):156−160.
    [21]
    王成波. 玉米谷蛋白的糖基化改性研究[J]. 黑龙江农业科学,2012(7):110−115. [WANG C B. Study on glycosylation of glutelin from waxy maize[J]. Heilongjiang Agricultural Sciences,2012(7):110−115. doi: 10.3969/j.issn.1002-2767.2012.07.032
    [22]
    陈世超. 燕麦蛋白质与β-葡聚糖在不同体系中美拉德反应的研究[D]. 无锡: 江南大学, 2011

    CHEN S C. Study on the Maillard reaction of oat protein and β-glucan in different systems[D]. Wuxi: Jiangnan University, 2011.
    [23]
    练钊. 缫丝蚕蛹蛋白功能性质及谷蛋白糖基化修饰的研究[D]. 南宁: 广西大学, 2018

    LIAN Z. Study on the functional properties and glycosylation of silkworm protein[D]. Nanning: Guangxi University, 2018.
    [24]
    杨成峻, 陈明舜, 戴涛涛, 等. 燕麦β-葡聚糖功能与应用研究进展[J]. 中国食品学报,2021,21(6):301−311. [YANG C J, CHEN M S, DAI T T, et al. Research advances in functional properties and application of oat β-glucan[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(6):301−311.
    [25]
    ZHANG Q Y, XIE J, XUE B, et al. Effect of sulfated modification on rheological and physiological properties of oat β-glucan oligosaccharides prepared by acid or oxidative degradation[J]. Journal of Cereal Science,2021,99:103209. doi: 10.1016/j.jcs.2021.103209
    [26]
    ZHA F C, DONG S Y, RAO J J, et al. Pea protein isolate-gum arabic Maillard conjugates improves physical and oxidative stability of oil-in-water emulsions[J]. Food Chemistry,2019,285:130−138. doi: 10.1016/j.foodchem.2019.01.151
    [27]
    臧艳妮, 赵妍嫣, 罗水忠, 等. 超声波和糖基化复合改性对小麦面筋蛋白性质和结构的影响[J]. 食品科学,2017,38(5):122−128. [ZANG Y N, ZHAO Y Y, LUO S Z, et al. Effect of ultrasonic treatment and glycosylation modification on characteristics and structure of wheat gluten[J]. Food Science,2017,38(5):122−128. doi: 10.7506/spkx1002-6630-201705020
    [28]
    穆利霞, 崔春, 赵谋明, 等. 阿拉伯胶-大豆分离蛋白接枝工艺优化及产物理化特性的研究[J]. 食品工业科技,2009,30(8):174−177. [MU L X, CUI C, ZHAO M M, et al. Study on soy protein isolate and gum acacia graft reaction process and graft's physical-chemical properties[J]. Science and Technology of Food Industry,2009,30(8):174−177. doi: 10.13386/j.issn1002-0306.2009.08.050
    [29]
    夏琪娜. 超声预处理结合美拉德对酪蛋白及其酶解物抗氧化性影响[D]. 哈尔滨: 东北农业大学, 2019

    XIA Q N. Effects of ultrasonic pretreatment combined with Maillard reaction on antioxidant activity of casein and its enzymatic hydrolysates[D]. Harbin: Northeast Agricultural University, 2019.
    [30]
    DONG J L, YANG M, ZHU Y Y, et al. Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat β-glucan by in vitro human fecal microbiota fermentation[J]. Food Research International, 2020, 138(Part B): 109818.
    [31]
    SHENG L, TANG G Y, WANG Q, et al. Molecular characteristics and foaming properties of ovalbumin-pullulan conjugates through the Maillard reaction[J]. Food Hydrocolloids,2020,100:105384. doi: 10.1016/j.foodhyd.2019.105384
    [32]
    张瑶. 不同糖化方法对提高大豆分离蛋白功能性质的对比研究[D]. 哈尔滨: 东北农业大学, 2017

    ZHANG Y. Research on comparison of functional properties of soy protein isolate prepared by different saccharification methods[D]. Harbin: Northeast Agricultural University, 2017.
    [33]
    张蓓. 燕麦蛋白质糖基化改性及乳化性研究[D]. 无锡: 江南大学, 2015

    ZHANG B. Study on modification of oat protein isolate by glycation reaction and emulsifying properties[D]. Wuxi: Jiangnan University, 2015.
    [34]
    CUI Q, ZHANG A Q, LI R, et al. Ultrasonic treatment affects emulsifying properties and molecular flexibility of soybean protein isolate-glucose conjugates[J]. Food Bioscience,2020,38:100747. doi: 10.1016/j.fbio.2020.100747
    [35]
    李望, 杨文艺, 孔霄, 等. 虫草参多酚提取物对羟基自由基介导的2-脱氧核糖裂解的抑制作用[J]. 食品科技,2021,46(11):188−194. [LI W, YANG W Y, KONG X, et al. Inhibitory effect of polyphenol extracts from Lycopus lucidus Turcz. on hydroxyl radical-mediated 2-deoxyribose degradation[J]. Food Science and Technology,2021,46(11):188−194. doi: 10.13684/j.cnki.spkj.2021.11.029
  • Cited by

    Periodical cited type(8)

    1. 韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 . 本站查看
    2. 邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
    3. 刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 . 本站查看
    4. 马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
    5. 赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
    6. 周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
    7. 渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 . 本站查看
    8. 靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (197) PDF downloads (19) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return