Citation: | WEI Jing, SONG Ruolan, CHEN Xiang, et al. Research Progress on Pharmacological Activities of Neohesperidin Dihydrochalcone and Its Synthetic Precursors[J]. Science and Technology of Food Industry, 2022, 43(23): 436−449. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010176. |
[1] |
雷琳, 黄宝华, 卢宇靖, 等. 新橙皮苷二氢查耳酮的调味应用及其生理活性研究进展[J]. 中国调味品,2014,39(12):41−47. [LEI L, HUANG B H, LU Y J, et al. Research progress of flavor modifying and physiological activity of neohesperidin dihydrochalcone[J]. China Condiment,2014,39(12):41−47.
|
[2] |
隗继浩. 新橙皮苷二氢查耳酮对OVA诱导口服耐受的影响[D]. 长春: 吉林大学, 2020
CHEN J H. Effect of neohesperidin dihydrochalcone on OVA-induced oral tolerance[D]. Changchun: Jilin University, 2020.
|
[3] |
梁健丹, 李海梅, 罗华健, 等. 新橙皮甙二氢查尔酮与HSA/BSA的相互作用机制研究[J]. 南宁师范大学学报(自然科学版),2020,37(2):29−36. [LIANG J D, LI H M, LUO H J, et al. Study on the interaction mechanism between neohesperidin dihydrochalcone and different organisms (HSA/BSA)[J]. Journal of Nanning Normal University(Natural Scinence Edition),2020,37(2):29−36.
|
[4] |
SHI Q, SONG X, FU J, et al. Artificial sweetener neohesperidin dihydrochalcone showed antioxidative, anti-inflammatory and anti-apoptosis effects against paraquat-induced liver injury in mice[J]. Int Immunopharmacol,2015,29(2):722−729. doi: 10.1016/j.intimp.2015.09.003
|
[5] |
HU L, LI L, XU D, et al. Protective effects of neohesperidin dihydrochalcone against carbon tetrachloride-induced oxidative damage in vivo and in vitro[J]. Chem Biol Interact,2014,213:51−59. doi: 10.1016/j.cbi.2014.02.003
|
[6] |
CHOI J M, YOON B S, LEE S K, et al. Antioxidant properties of neohesperidin dihydrochalcone: Inhibition of hypochlorous acid-induced DNA strand breakage, protein degradation, and cell death[J]. Biol Pharm Bull,2007,30(2):324. doi: 10.1248/bpb.30.324
|
[7] |
SUAREZ J, HERRERA MD, MARHUENDA E. In vitro scavenger and antioxidant properties of hesperidin and neohesperidin dihydrochalcone[J]. Phytomedicine,1998,5(6):469−73. doi: 10.1016/S0944-7113(98)80044-5
|
[8] |
XIA X M, FU J L, SONG X F, et al. Neohesperidin dihydrochalcone down-regulates MyD88-dependent and -independent signaling by inhibiting endotoxin-induced trafficking of TLR4 to lipid rafts[J]. Free Radic Biol Med,2015,89:522−532. doi: 10.1016/j.freeradbiomed.2015.08.023
|
[9] |
BOK S H, JEONG T S, HWAN B K, et al. Use of neohesperidin dihydrochalcone for the manufacture of a medicament for preventing or treating elevated blood lipid levelrelated diseases: European, EP 1113726 Bl[P]. 2004-03-24.
|
[10] |
王振东, 陈良, 王洋. 关于新甲基橙皮苷二氢查耳酮食品级产品标准和检测方法的研究[J]. 中国调味品,2016,41(11):135−139. [WANG Z D, CHEN L, WANG Y. Research on food-grade product standards and testing methods of neohesperidin dihydrochalcone[J]. China Condiment,2016,41(11):135−139.
|
[11] |
李爱平. 新橙皮苷二氢查耳酮的制备及应用研究[D]. 广州: 华南理工大学, 2016
LI A P. Preparation and application of neosperidin dihydrochalcone[D]. Guangzhou: South China University of Technology, 2016.
|
[12] |
TAN S, DAI L L, TAN P C, et al. Hesperidin administration suppresses the proliferation of lung cancer cells by promoting apoptosis via targeting the miR132/ZEB2 signalling pathway[J]. Int J Mol Med,2020,46(6):2069−2077. doi: 10.3892/ijmm.2020.4756
|
[13] |
XU F, ZANG J, CHEN D Z, et al. Neohesperidin induces cellular apoptosis in human breast adenocarcinoma MDA-MB-231 cells via activating the Bcl-2/Bax-mediated signaling pathway[J]. Nat Prod Commun,2012,7(11):1475−1478.
|
[14] |
CHEN M J, PENG W L, HU S F, et al. miR-126/VCAM-1 regulation by naringin suppresses cell growth of human non-small cell lung cancer[J]. Oncol Lett,2018,16(4):4754−4760.
|
[15] |
AKSU E H, KANDEMIR F M, KÜCÜKLER S. The effects of hesperidin on colistin-induced reproductive damage, autophagy, and apoptosis by reducing oxidative stress[J]. Andrologia,2021,53(2):e13900.
|
[16] |
徐坤勇, 郭建忠, 颜娟, 等. 响应曲面法优化枳壳中柚皮苷与新橙皮苷的提取工艺及抗氧化研究[J]. 现代中药研究与实践,2021,35(1):66−72. [XU K Y, GUO J Z, YAN J, et al. Optimization of extraction process of naringin and neohesperidin from Aurantii fructus by response surface methodology and anti-oxidant activity[J]. Research and Practice on Chinese Medicines,2021,35(1):66−72.
|
[17] |
CHEN P, XIAO Z T, WU H, et al. The effects of naringin on cigarette smoke-induced dynamic changes in oxidation/antioxidant system in lung of mice[J]. Nat Prod Commun,2020,15(8):1−9.
|
[18] |
LI Y S, ZHANG J, TIAN G H, et al. Kirenol, darutoside and hesperidin contribute to the anti-inflammatory and analgesic activities of siegesbeckia pubescens makino by inhibiting COX-2 expression and inflammatory cell infiltration[J]. J Ethnopharmacol,2021,268:113547. doi: 10.1016/j.jep.2020.113547
|
[19] |
JAIN M, PARMAR H S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation[J]. Inflamm Res,2011,60(5):483−491. doi: 10.1007/s00011-010-0295-0
|
[20] |
REHMAN K, MUARWAR S M, AKASH MSH, et al. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation[J]. PLoS One,2020,15(1):e0227637. doi: 10.1371/journal.pone.0227637
|
[21] |
JIA S, HU Y, ZHANG W N, et al. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice[J]. Food Funct,2015,6(3):878−886. doi: 10.1039/C4FO00993B
|
[22] |
WANG K, PENG S J, XIONG S F, et al. Naringin inhibits autophagy mediated by PI3K-Akt-mTOR pathway to ameliorate endothelial cell dysfunction induced by high glucose/high fat stress[J]. Eur J Pharmacol,2020,874:173003. doi: 10.1016/j.ejphar.2020.173003
|
[23] |
AJA P M, EKPONO E U, AWOKE J N, et al. Hesperidin ameliorates hepatic dysfunction and dyslipidemia in male wistar rats exposed to cadmium chloride[J]. Toxicol Rep,2020,7:1331−1338. doi: 10.1016/j.toxrep.2020.09.014
|
[24] |
LU J F, ZHU M Q, ZHANG H, et al. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice[J]. FASEB J,2020,34(9):12053−12071. doi: 10.1096/fj.201903102RR
|
[25] |
BI C, JIANG Y N, FU Y N, et al. Naringin inhibits lipopolysaccharide-induced damage in human umbilical vein endothelial cells via attenuation of inflammation, apoptosis and MAPK pathways[J]. Cytotechnology,2016,68(4):1473−1487. doi: 10.1007/s10616-015-9908-3
|
[26] |
ABDELAZIZ R M, ABDELAZEM A Z, HASHEM K S, et al. Protective effects of hesperidin against MTX-induced hepatotoxicity in male albino rats[J]. N-S Arch Pharmacol,2020,393(8):1405−1417. doi: 10.1007/s00210-020-01843-z
|
[27] |
CAGLAYAN C, TEMEL Y, KANDEMIR F M, et al. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage[J]. Environ Sci Pollut Res Int,2018,25(21):20968−20984. doi: 10.1007/s11356-018-2242-5
|
[28] |
HAN G E, KANG H T, CHUNG S, et al. Novel neohesperidin dihydrochalcone analogue inhibits adipogenic differentiation of human adipose-derived stem cells through the Nrf2 pathway[J]. Int J Mol Sci,2018,19(8):2215. doi: 10.3390/ijms19082215
|
[29] |
IRANSHAHI M, REZAEE R, PARHIZ H, et al. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin[J]. Life Sci,2015,137:125−132. doi: 10.1016/j.lfs.2015.07.014
|
[30] |
PARHIZ H, ROOHBAKHSH A, SOLTANI F, et al. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models[J]. Phytother Res,2015,29(3):323−331. doi: 10.1002/ptr.5256
|
[31] |
DALY K, DARBY A C, HALL N, et al. Bacterial sensing underlies artificial sweetener-induced growth of gut Lactobacillus[J]. Environ Microbiol,2016,18(7):2159−2171. doi: 10.1111/1462-2920.12942
|
[32] |
SHE G M, WANG S, LIU B. Dihydrochalcone glycosides from oxytropis myriophylla[J]. Chem Cent J,2011,5:71. doi: 10.1186/1752-153X-5-71
|
[33] |
王刚, 蔡才, 王亚珍, 等. 新橙皮苷二氢查耳酮的合成工艺及应用进展[J]. 江汉大学学报(自然科学版),2020,48(1):37−44. [WANG G, CAI C, WANG Y Z, et al. Synthesis and application of neohesperidin dihydrochalcone[J]. Journal of Jianghan University Natural Science Edition,2020,48(1):37−44.
|
[34] |
ROOHBAKHSH A, PARHIZ H, SOLTANI F, et al. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases[J]. Life Sci,2015,124:64−74. doi: 10.1016/j.lfs.2014.12.030
|
[35] |
陈春玉, 李毅, 黄超明, 等. 新橙皮苷的制备工艺及应用进展[J]. 天然气化工(C1化学与化工),2014,39(3):81−87. [CHEN C Y, LI Y, HUANG C M, et al. Advances in preparation and application of neohesperidin[J]. Natural Gas Chemical Industry,2014,39(3):81−87.
|
[36] |
SHIRANI K, YOUSEFSANI B S, SHIRANI M, et al. Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: A review[J]. Phytother Res,2020,34(8):1734−1744. doi: 10.1002/ptr.6641
|
[37] |
刘坚, 王振, 蒋书歌, 等. 根皮乙酰苯-4′-β-新橙皮糖苷合成新橙皮苷工艺研究[J]. 中国野生植物资源,2020,39(8):1−5. [LIU J, WANG Z, JIANG S G, et al. Study on the synthesis of neohesperidin from phloroacetophenone-4'-β-neohesperidoside[J]. Chinese Wild Plant Resources,2020,39(8):1−5.
|
[38] |
NIJVELDT R J, VAN NOOD E, VAN HOORN D E, et al. Flavonoids: A review of probable mechanisms of action and potential applications[J]. Am J Clin Nutr,2001,74(4):418−425. doi: 10.1093/ajcn/74.4.418
|
[39] |
COS P, YING L, CALOMME M, et al. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers[J]. J Nat Prod,1998,61(1):71−76. doi: 10.1021/np970237h
|
[40] |
VAN ACKER S A, TROMP M N, HAENEN G R, et al. Flavonoids as scavengers of nitric oxide radical[J]. Biochem Biophys Res Commun,1995,214(3):755−759. doi: 10.1006/bbrc.1995.2350
|
[41] |
LOTITO S B, FREI B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon?[J]. Free Radic Biol Med,2006,41(12):1727−1746. doi: 10.1016/j.freeradbiomed.2006.04.033
|
[42] |
KUMAR R, AKHTAR F, RIZZVI S I. Hesperidin attenuates altered redox homeostasis in an experimental hyperlipidaemic model of rat[J]. Clin Exp Pharmacol Physiol,2020,47(4):571−582. doi: 10.1111/1440-1681.13221
|
[43] |
ESTRUEL-AMADES S, MASSOT-CLADERA M, GARCIA-CERDÀ P, et al. Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats[J]. Nutrients,2019,11(4):783. doi: 10.3390/nu11040783
|
[44] |
ELHELALY A E, ALBASHER G, ALFARRAJ S, et al. Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats[J]. Environ Sci Pollut Res Int,2019,26(34):35151−35162. doi: 10.1007/s11356-019-06660-3
|
[45] |
贾富霞, 王秀娟, 罗容. 酸橙枳实黄酮类抗氧化活性的药效组分研究[J]. 世界中医药,2017,16(15):46−55. [JIA F X, WANG X J, LUO R. Study on antioxidative active components alignment of flavonoids from Aurantii fructus immaturus[J]. World Chinese Medicine,2017,16(15):46−55.
|
[46] |
龙江宜, 陈健民, 廖苑君, 等. 柚皮苷改善CCl2所致大鼠学习记忆障碍及其机制[J]. 中国药理学通报,2020,36(3):372−379. [LONG J Y, CHEN J M, LIAO Y J, et al. Naringin improves learning and memory impairment induced by CCl2 in rats and its mechanism[J]. Chinese Pharmacological Bulletin,2020,36(3):372−379.
|
[47] |
张启焕, 严新, 许伟, 等. 超声波辅助醇溶剂法提取橙皮苷及体外抑菌活性分析[J]. 安徽农业科学,2015,43(31):33−34, 52. [ZHANG Q H, YAN X, XU W, et al. Study on extraction of hesperidin from ponkan peel and analysis of its bacteriostatic activity[J]. Journal of Anhui Agricultural Sciences,2015,43(31):33−34, 52.
|
[48] |
JIN Y B, LIU P, LIU X G, et al. In vitro antioxidant and antimicrobial activities of the extract of Pericarpium Citri Reticulatae of a new Citrus cultivar and its main flavonoids[J]. LWT-Food Sci Technol,2008,41(4):597−603. doi: 10.1016/j.lwt.2007.04.008
|
[49] |
DU L H, JIANG Z P, XU L L, et al. Microfluidic reactor for lipase-catalyzed regioselective synthesis of neohesperidin ester derivatives and their antimicrobial activity research[J]. Carbohydr Res,2018,455:32−38. doi: 10.1016/j.carres.2017.11.008
|
[50] |
左龙亚, 滕左, 王孝仕, 等. 不同溶剂柠檬果皮提取物抗氧化、抑菌活性比较及其与多酚组成的关系[J]. 园艺学报,2017,44(4):743−754. [ZUO L Y, TENG Z, WANG X S, et al. Comparsion of antioxidant and antifungal activities of various solvent extracts of lemon peel and analysis the relationship with polyphenol composition[J]. Acta Horticulturae Sinica,2017,44(4):743−754.
|
[51] |
ZHAO Y, LIU S. Bioactivity of naringin and related mechanisms[J]. Pharmazie,2021,76(8):359−363.
|
[52] |
FERRERO-MILIANI L, NIELSEN O H, ANDERSEN P S, et al. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation[J]. Clin Exp Immunol,2010,147:227−235.
|
[53] |
BENAVENTE-GARCÍA O, CASTILLO J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity[J]. J Agric Food Chem,2008,56(15):6185−6205. doi: 10.1021/jf8006568
|
[54] |
WANG S Y, HE N, XING H Y, et al. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis[J]. J Recept Signal Transduct Res,2020,40(4):388−394. doi: 10.1080/10799893.2020.1738483
|
[55] |
冯宝民, 蒋革, 贾景明, 等. 柚皮苷和新橙皮苷抗过敏作用的研究[J]. 大连大学学报,2005(4):63−64. [FENG B M, JIANG G, JIA J M, et al. Study on the anti-allergic activities of narigin and neohesperidin[J]. Journal of Dalian University,2005(4):63−64.
|
[56] |
HAMDAN D I, MAHMOUD M F, WINK M, et al. Effect of hesperidin and neohesperidin from bittersweet orange (Citrus aurantium var. bigaradia) peel on indomethacin-induced peptic ulcers in rats[J]. Environ Toxicol Pharmacol,2014,37(3):907−915. doi: 10.1016/j.etap.2014.03.006
|
[57] |
AHMAD S F, ATTIA S M, BAKHEET S A, et al. Naringin attenuates the development of carrageenan-induced acute lung inflammation through inhibition of NF-κB, STAT3 and pro-inflammatory mediators and enhancement of IκBα and anti-inflammatory cytokines[J]. Inflammation,2015,38(2):846−857. doi: 10.1007/s10753-014-9994-y
|
[58] |
GIL M, KIM Y K, HONG S B, et al. Naringin decreases TNF-α and HMGB1 release from LPS-stimulated macrophages and improves survival in a CLP-induced sepsis mice[J]. PLoS One,2016,11(10):e0164186. doi: 10.1371/journal.pone.0164186
|
[59] |
SU C Y, XIA X M, SHI Q, et al. Neohesperidin dihydrochalcone versus CCl4-induced hepatic injury through different mechanisms: The implication of free radical scavenging and Nrf2 activation[J]. J Agric Food Chem,2015,63(22):5468−5475. doi: 10.1021/acs.jafc.5b01750
|
[60] |
ABD-ELHAKIM Y M, GHONEIM M H, KHAIRY M H, et al. Single or combined protective and therapeutic impact of taurine and hesperidin on carbon tetrachloride-induced acute hepatic injury in rat[J]. Environ Sci Pollut Res Int,2020,27(12):13180−13193. doi: 10.1007/s11356-020-07895-1
|
[61] |
隗世波, 刘青云, 石雅娴. 橙皮苷对脓毒症所致急性肾损伤大鼠的作用及其机制[J]. 中国新药与临床杂志,2020,39(8):494−498. [CHEN S B, LIU Q Y, SHI Y X. Effects and mechanism of hesperidin on sepsis-induced acute kidney injury in rats[J]. Chinese Journal of New Drugs and Clinical Remedies,2020,39(8):494−498.
|
[62] |
PARK W S, PARK M S, KANG S W, et al. Hesperidin shows protective effects on renal function in ischemia-induced acute kidney injury (Sprague-Dawley Rats)[J]. Transplant Proc,2019,51(8):2838−2841. doi: 10.1016/j.transproceed.2019.02.055
|
[63] |
WANG S W, SHENG H, BAI Y F, et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice[J]. Nutr Diabetes,2020,10(1):27. doi: 10.1038/s41387-020-00130-3
|
[64] |
ADIL M, KANDHARE A D, GHOSH P, et al. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: Role of FXR and KIM-1[J]. Ren Fail,2016,38(6):1007−1020. doi: 10.3109/0886022X.2016.1163998
|
[65] |
BOK S H, JEONG T S, CHOI M S, et al. Bioflavonoids as plasma high density lipoprotein level increasing agent: Canadian, CA 2346325 Al[P]. 2001-04-07.
|
[66] |
XIONG H J, WANG J, RAN Q, et al. Hesperidin: A therapeutic agent for obesity[J]. Drug Des Devel Ther,2019,13:3855−3866. doi: 10.2147/DDDT.S227499
|
[67] |
SUNDARAM R, NANDHAKUMAR E, HASEENA B H. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats[J]. Toxicol Mech Methods,2019,29(9):644−653. doi: 10.1080/15376516.2019.1646370
|
[68] |
PRASATTHONG P, MEEPHAT S, RATTANAKANOKCHAI S, et al. Hesperidin ameliorates signs of the metabolic syndrome and cardiac dysfunction via IRS/Akt/GLUT4 signaling pathway in a rat model of diet-induced metabolic syndrome[J]. Eur J Nutr,2021,60(2):833−848. doi: 10.1007/s00394-020-02291-4
|
[69] |
ZHANG J K, SUN C D, YAN Y Y, et al. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells[J]. Food Chem,2012,135(3):1471−1478. doi: 10.1016/j.foodchem.2012.06.004
|
[70] |
YANG Y, GONG W Y, JIN C X, et al. Naringin ameliorates experimental diabetic renal fibrosis by inhibiting the ERK1/2 and JNK MAPK signaling pathways[J]. J Funct Foods,2018,50:53−62. doi: 10.1016/j.jff.2018.09.020
|
[71] |
PENGNET S, PROMMAOUAN S, SUMARITHUM P, et al. Naringin reverses high-cholesterol diet-induced vascular dysfunction and oxidative stress in rats via regulating LOX-1 and NADPH oxidase subunit expression[J]. Biomed Res Int,2019:3708497.
|
[72] |
ZOPUN M, LIEDER B, HOLIK A K, et al. Noncaloric sweeteners induce peripheral serotonin secretion via the T1R3-dependent pathway in human gastric parietal tumor cells (HGT-1)[J]. J Agric Food Chem,2018,66(27):7044−7053. doi: 10.1021/acs.jafc.8b02071
|
[73] |
DALY K, DARBY A C, HALL N, et al. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance[J]. Br J Nutr,2014,111(Suppl 1):S30−S35.
|
[74] |
SHI Z, LEI H, CHEN G, et al. Impaired intestinal Akkermansia muciniphila and aryl hydrocarbon receptor ligands contribute to nonalcoholic fatty liver disease in mice[J]. mSystems,2021,6(1):20.
|
[75] |
WU M N, LI Y R, GU Y F. Hesperidin improves colonic motility in loeramide-induced constipation rat model via 5-hydroxytryptamine 4R/cAMP signaling pathway[J]. Digestion,2020,101:692−705. doi: 10.1159/000501959
|
[76] |
ESTRUEL-AMADES S, MASSOT-CLADERA M, PÉREZ-CANO F J, et al. Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats[J]. Nutrients,2019,11(2):324. doi: 10.3390/nu11020324
|
[77] |
GUO K, REN J, GU G, et al. Hesperidin protects against intestinal inflammation by restoring intestinal barrier function and up-regulating treg cells[J]. Mol Nutr Food Res,2020,64(10):e1970058. doi: 10.1002/mnfr.201970058
|
[78] |
GONG Y, DONG R, GAO X, et al. Neohesperidin prevents colorectal tumorigenesis by altering the gut microbiota[J]. Pharmacol Res,2019,148:104460. doi: 10.1016/j.phrs.2019.104460
|
[79] |
袁菱, 陈彦, 辛然, 等. 柚皮苷、橙皮苷、新橙皮苷与芍药苷配伍的肠吸收研究[J]. 中国医院药学杂志,2013,33(15):1256−1260. [YUAN L, CHEN Y, XIN R, et al. Study on intestinal absorption of main components after naringin, hesperidin, neohesperidin co-administration with paeoniflorin, respectively[J]. Chinese Journal of Hospital Pharmacy,2013,33(15):1256−1260. doi: 10.13286/j.cnki.chinhosppharmacyj.2013.15.011
|
[80] |
LEE J H, LEE S H, KIM Y S, et al. Protective effects of neohesperidin and poncirin isolated from the fruits of Poncirus trifoliata on potential gastric disease[J]. Phytother Res,2009,23(12):1748−1753. doi: 10.1002/ptr.2840
|
[81] |
LIU P, BIAN Y, FAN Y, et al. Protective effect of naringin on in vitro gut-vascular barrier disruption of intestinal microvascular endothelial cells induced by TNF-α[J]. J Agric Food Chem,2020,68(1):168−175. doi: 10.1021/acs.jafc.9b06347
|
[82] |
MANEESAI P, BUNBUPHA S, POTUE P, et al. Hesperidin prevents nitric oxide deficiency-induced cardiovascular remodeling in rats via suppressing TGF-β1 and MMPs protein expression[J]. Nutrients,2018,10(10):1549. doi: 10.3390/nu10101549
|
[83] |
LI X F, HU X R, WANG J C, et al. Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury[J]. Int J Mol Med,2018,42(4):1917−1924.
|
[84] |
KUZU M, KANDEMIR F M, YILDIRIM S, et al. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin[J]. Environ Sci Pollut Res Int,2021,28(9):10818−10831. doi: 10.1007/s11356-020-11327-5
|
[85] |
ZHANG J S, FU X D, YANG L, et al. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro[J]. Biomed Pharmacother,2020,129:110364. doi: 10.1016/j.biopha.2020.110364
|
[86] |
CHEN J, GUO R, YAN H, et al. Naringin inhibits ROS-activated MAPK pathway in high glucose-induced injuries in H9c2 cardiac cells[J]. Basic Clin Pharmacol Toxicol,2014,114(4):293−304. doi: 10.1111/bcpt.12153
|
[87] |
刘丹, 熊书, 马羚, 等. 柚皮苷对缺氧/复氧损伤心肌细胞Caspase-3活性及IRE1α表达的影响[J]. 中国生物制品学杂志,2020,33(8):904−907. [LIU D, XIONG S, MA L, et al. Effect of naringin on Caspase-3 activity and IRE1α expression in myocardial cells injured by hypoxia/reoxygenation[J]. Chinese Journal of Biologicals,2020,33(8):904−907.
|
[88] |
HAJIALYANI M, HOSEIN F M, ECHEVERRÍA J, et al. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence[J]. Molecules,2019,24(3):648. doi: 10.3390/molecules24030648
|
[89] |
TAMILSELVAM K, BRAIDY N, MANIVASAGAM T, et al. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson's disease[J]. Oxid Med Cell Longev,2013:102741.
|
[90] |
ANTUNES M S, LADD F V L, LADD A A B L, et al. Hesperidin protects against behavioral alterations and loss of dopaminergic neurons in 6-OHDA-lesioned mice: The role of mitochondrial dysfunction and apoptosis[J]. Metab Brain Dis,2021,36(1):153−167. doi: 10.1007/s11011-020-00618-y
|
[91] |
WELBAT J U, NAEWLA S, PANNANGRONG W, et al. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat[J]. Biochem Pharmacol,2020,178:114083. doi: 10.1016/j.bcp.2020.114083
|
[92] |
WANG J J, CUI P. Neohesperidin attenuates cerebral ischemia-reperfusion injury via inhibiting the apoptotic pathway and activating the Akt/Nrf2/HO-1 pathway[J]. J Asian Nat Prod Res,2013,15(9):1023−1037. doi: 10.1080/10286020.2013.827176
|
[93] |
WANG J, YUAN Y, ZHANG P, et al. Neohesperidin prevents Aβ25-35-induced apoptosis in primary cultured hippocampal neurons by blocking the s-nitrosylation of protein-disulphide isomerase[J]. Neurochem Res,2018,43(9):1736−1744. doi: 10.1007/s11064-018-2589-5
|
[94] |
KULASEKARAN G, GANAPASAM S. Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells[J]. Mol Cell Biochem,2015,409(1-2):199−211. doi: 10.1007/s11010-015-2525-9
|
[95] |
MENG X D, FU M M, WANG S F, et al. Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer's disease by regulating multiple metabolic pathways[J]. Mol Med Rep,2021,23(5):332. doi: 10.3892/mmr.2021.11971
|
[96] |
HELMY H S, SENOUSY M A, EL-SAHAR A E, et al. Aberrations of miR-126-3p, miR-181a and sirtuin1 network mediate Di-(2-ethylhexyl) phthalate-induced testicular damage in rats: The protective role of hesperidin[J]. Toxicology,2020,433-434:152406. doi: 10.1016/j.tox.2020.152406
|
[97] |
OLAYINKA E T, ADEWOLE K E. In vivo andin silico evaluation of the ameliorative effect of hesperidin on finasteride-induced testicular oxidative stress in wistar rats[J]. Toxicol Mech Methods,2021,31(2):81−89. doi: 10.1080/15376516.2020.1831123
|
[98] |
ABD-ELHAKIM Y M, GHONEIM M H, EBRAHEIM L L M, et al. Taurine and hesperidin rescues carbon tetrachloride-triggered testicular and kidney damage in rats via modulating oxidative stress and inflammation[J]. Life Sci,2020,254:117782. doi: 10.1016/j.lfs.2020.117782
|
[99] |
STANISIC D, COSTA A F, CRUZ G, et al. Applications of flavonoids, with an emphasis on hesperidin, as anticancer prodrugs: Phytotherapy as an alternative to chemotherapy[J]. Studies in Natural Products Chemistry,2018,58:161−212.
|
[100] |
KONGTAWELERT P, WUDTIWAI B, SHWE T H, et al. Inhibitory effect of hesperidin on the expression of programmed death ligand (PD-L1) in breast cancer[J]. Molecules,2020,25(2):252. doi: 10.3390/molecules25020252
|
[101] |
ZENG L, ZHEN Y, CHEN Y, et al. Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF-κB/COX-2-caspase-1 pathway in HeLa cervical cancer cells[J]. Int J Oncol,2014,45(5):1929−1936. doi: 10.3892/ijo.2014.2617
|
[102] |
KASHANI-AMIN E, EBRAHIM-HABIBI A, LARIJANI B, et al. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: A comparative study on bacterial, fungal, and mammalian enzymes[J]. J Mol Recognit,2015,28(10):605−613. doi: 10.1002/jmr.2473
|
[103] |
LEE H J, IM A R, KIM S M, et al. The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways[J]. BMC Complement Altern Med,2018,18(1):39. doi: 10.1186/s12906-017-2058-8
|
[104] |
VENTURA-MARTINEZ R, MARES-SÁNchez J J, AVILÉS-HERRERA J, et al. Antinociceptive synergy between metamizole and hesperidin in a model of visceral pain in mice[J]. Arch Med Res,2021,52(4):389−396. doi: 10.1016/j.arcmed.2020.12.011
|
[105] |
GUO J, FANG Y, JIANG F, et al. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice[J]. Eur J Pharmacol,2019,864:172712. doi: 10.1016/j.ejphar.2019.172712
|
[106] |
TAN Z, CHENG J, LIU Q, et al. Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice[J]. Mol Cell Endocrinol,2017,439:369−378. doi: 10.1016/j.mce.2016.09.026
|
[107] |
GUO C, ZHANG H, GUAN X, et al. The anti-aging potential of neohesperidin and its synergistic effects with other citrus flavonoids in extending chronological lifespan of saccharomyces cerevisiae BY4742[J]. Molecules,2019,24(22):4093. doi: 10.3390/molecules24224093
|
[108] |
LI F B, SUN X L, MA J X, et al. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway[J]. Biochem Biophys Res Commun,2014,452(3):629−635. doi: 10.1016/j.bbrc.2014.08.117
|
[109] |
LI N, JIANG Y, WOOLEY P H, et al. Naringin promotes osteoblast differentiation and effectively reverses ovariectomy-associated osteoporosis[J]. J Orthop Sci,2013,18(3):478−485. doi: 10.1007/s00776-013-0362-9
|
[110] |
YUE W, YUN L, LUO M, et al. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice[J]. Biomedical Reports,2016,5(6):715. doi: 10.3892/br.2016.797
|