ZHANG Yun, ZHANG Kangyi, ZHAO Di, et al. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97−106. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010171.
Citation: ZHANG Yun, ZHANG Kangyi, ZHAO Di, et al. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97−106. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010171.

Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes

More Information
  • Received Date: January 19, 2022
  • Available Online: July 28, 2022
  • To explore the effect of saturated fatty acid carbon chain length on the structure and in vitro digestive properties of waxy wheat A and B starch-lipid complexes. Using waxy wheat A and B starch as the main raw materials, after being modified by compound enzymes, they were compounded with lauric acid, myristic acid, palmitic acid and stearic acid respectively, and the compound index (CI value), the solubility and swelling power, iodine absorption characteristics, crystal structure, fourier transform infrared spectroscopy and predicted glycemic index (pGI value) were investigated. The results showed that with the increasing of carbon chain (12~18), the CI values of starch-lipid complexes of waxy wheat A and B decreased from 53.66% to 38.15%, and from 60.35% to 41.04%. The solubility and swelling power of starch-lipid complexes of waxy wheat A and B increased gradually with the increasing of temperature and the number of carbon atoms. The solubility and swelling power of waxy wheat A starch-lauric acid at 90 ℃ were 1.99% and 3.34 g/g, the solubility and swelling power of waxy wheat B starch-lauric acid at 90 ℃ were 1.74% and 3.18 g/g respectively. Among the four lipid complexes, the complexes formed by waxy wheat starch A, B and lauric acid had relatively high crystallinity, reaching 25.37% and 23.50%, and their ratios at 1047/1022 cm−1 were also high, which were 0.993 and 0.989. Compared with the uncomplexed lipid-modified waxy wheat starch, the pGI values decreased significantly, from 47.63 to 36.61, and from 48.30 to 35.49 respectively. This study can provide a reference for the structure and in vitro digestion characteristics of starch-lipid complexes.
  • [1]
    郭宏伟, 赵城彬, 吴玉柱, 等. 红豆淀粉-脂质复合物结构及体外消化性质[J]. 食品科学,2019,40(21):21−27. [GUO Hongwei, ZHAO Chengbin, WU Yuzhu, et al. Red bean starch-lipid complex structure and in vitro digestion properties[J]. Food Science,2019,40(21):21−27. doi: 10.7506/spkx1002-6630-20181112-125
    [2]
    CHAO, CHEN, YU, et al. Mechanisms underlying the formation of complexes between maize starch and lipids[J]. Journal of Agricultural & Food Chemistry,2018,66(1):272−278.
    [3]
    REDDY C K, CHOI S M, LEE D J, et al. Complex formation between starch and stearic acid: Effect of enzymatic debranching for starch[J]. Food Chemistry,2018,244:136−142. doi: 10.1016/j.foodchem.2017.10.040
    [4]
    OVERTVELDT S V, VERHAEGHE T, JOOSTEN H J, et al. A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications[J]. Biotechnology Advances,2015,33(8):1814−1828. doi: 10.1016/j.biotechadv.2015.10.010
    [5]
    HU X P, HUANG T T, MEI J Q, et al. Effects of continuous and intermittent retrogradation treatments on in vitro digestibility and structural properties of waxy wheat starch[J]. Food Chemistry,2015,174:31−36. doi: 10.1016/j.foodchem.2014.11.026
    [6]
    褚绍言, 孙冰华, 田潇凌, 等. 淀粉-脂质复合物的形成及其性质的研究进展[J]. 食品研究与开发,2021,42(12):206−211. [CHU Shaoyan, SUN Binghua, TIAN Xiaoling, et al. Research progress on the formation and properties of starch-lipid complexes[J]. Food Research and Development,2021,42(12):206−211. doi: 10.12161/j.issn.1005-6521.2021.12.032
    [7]
    黄承刚, 李津源, 徐任园, 等. 直链淀粉含量对淀粉-脂肪酸复合物形成及理化特性的影响[J/OL]. 食品工业科技: 1−12[2022-01-18].

    HUANG Chenggang, LI Jinyuan, XU Renyuan, et al. Effects of amylose content on the formation and physicochemical properties of starch-fatty acid complexes[J/OL]. Food Industry Science and Technology: 1−12[2022-01-18].
    [8]
    WANG R, LIU P F, CUI B, et al. Effects of pullulanase debranching on the properties of potato starch -lauric acid complex and potato starch-based film[J]. International Journal of Biological Macromolecules,2020,156(1):1330−1336.
    [9]
    LIU P F, KANG X M, CUI B, et al. Effects of amylose content and enzymatic debranching on the properties of maize starch-glycerol monolaurate complexes[J]. Carbohydrate Polymers,2019,222:115000. doi: 10.1016/j.carbpol.2019.115000
    [10]
    LIU P F, GAO W, ZHANG X L, et al. Physicochemical properties of pea starch-lauric acid complex modified by maltogenic amylase and pullulanase[J]. Carbohydrate Polymers,2020,242:116332. doi: 10.1016/j.carbpol.2020.116332
    [11]
    LIU P F, FANGY S, ZHANG X L, et al. Effects of multienzyme treatment on the physicochemical properties of maize starch-lauric acid complex[J]. Food Hydrocolloids,2020,107:105941. doi: 10.1016/j.foodhyd.2020.105941
    [12]
    WANG S J, CHAO C, CAI J J, et al. Starch-lipid and starch-lipid-protein complexes: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(3):1056−1079. doi: 10.1111/1541-4337.12550
    [13]
    VASILLIADOU E, RAPHAELIDES S N, PAPASTERGIADIS E. Effect of heating time and temperature on partially gelatinized starch-fatty acid interactions[J]. LWT-Food Science and Technology,2015,60(2):698−707. doi: 10.1016/j.lwt.2014.10.026
    [14]
    WANG S J, WANG J R, YU J L, et al. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis[J]. Food Chemistry,2016,190:285−292. doi: 10.1016/j.foodchem.2015.05.086
    [15]
    谢新华, 孙曙光, 王娜, 等. 淀粉-脂类复合物对稻米淀粉黏滞特性的影响[J]. 中国食品学报,2013,13(8):91−95. [XIE Xinhua, SUN Shuguang, WANG Na, et al. Effects of starch-lipid complexes on the viscosity properties of rice starch[J]. Chinese Journal of Food Science,2013,13(8):91−95.
    [16]
    FAROOQ A M, DHITAL S, LI C, et al. Effects of palm oil on structural and in vitro digestion properties of cooked rice starches[J]. International Journal of Biological Macromolecules,2017,107:1080−1085.
    [17]
    ZHANG K, ZHAO D, ZHANG X, et al. Effects of the removal of lipids and surface proteins on the physicochemical and structural properties of green wheat starches[J]. Starch‐Stärke, 2021, 73(1−2).
    [18]
    GUO L, LI J, GUI Y, et al. Improving waxy rice starch functionality through branching enzyme and glucoamylase: Role of amylose as a viable substrate[J]. Carbohydrate Polymers,2019,230:115712.
    [19]
    KANG X, LIU P, GAO W, et al. Preparation of starch-lipid complex by ultrasonication and its film forming capacity[J]. Food Hydrocolloids,2020,99:105340. doi: 10.1016/j.foodhyd.2019.105340
    [20]
    SUN S, JIN Y, HONG Y, et al. Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes[J]. Food Hydrocolloids,2021,110:106224. doi: 10.1016/j.foodhyd.2020.106224
    [21]
    LI X, GAO X, LU J, et al. Complex formation, physicochemical properties of different concentration of palmitic acid yam (Dioscorea pposita Thunb.) starch preparation mixtures[J]. LWT-Food Science and Technology,2019:130−137.
    [22]
    李蒙娜. 小麦抗性淀粉的制备及结构性质研究[D]. 合肥: 合肥工业大学, 2019.

    LI Mengna. Preparation and structural properties of wheat resistant starch[D]. Hefei: Hefei University of Technology, 2019.
    [23]
    YUAN, XU D, CUI B, et al. Gelation of K-carrageenan/Konjac glucommanan compound gel: Effect of cyclodextrins[J]. Food Hydrocolloids,2019,87(FEB.):158−164.
    [24]
    THANGAVEL K, DHIVYA K. Determination of curcumin, starch and moisture content in turmeric by Fourier transform near infrared spectroscopy (FT-NIR)[J]. Engineering in Agriculture, Environment and Food,2019,12(2):264−269. doi: 10.1016/j.eaef.2019.02.003
    [25]
    JIAN Z A, MX A, LW B, et al. Structure and physicochemical properties of native starch and resistant starch in Chinese yam (Dioscorea opposita Thunb.)[J]. Carbohydrate Polymers,2020,237:116188. doi: 10.1016/j.carbpol.2020.116188
    [26]
    ARGYRI K, ATHANSATOU A, BOUGA M, et al. The potential of an in vitro digestion method for predicting glycemic response of foods and meals[J]. Nutrients,2016,8(4):209. doi: 10.3390/nu8040209
    [27]
    KAWAI K, TAKATO S, SASAKI T, et al. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch-fatty acid mixtures[J]. Food Hydrocolloids,2012,27(1):228−234. doi: 10.1016/j.foodhyd.2011.07.003
    [28]
    LU H, YANG Z, YU M, et al. Characterization of complexes formed between debranched starch and fatty acids having different carbon chain lengths[J]. International Journal of Biological Macromolecules,2021,167:595−604. doi: 10.1016/j.ijbiomac.2020.11.198
    [29]
    SABARATNAM N A, THAVA V A, RATNAJOTHI H B, et al. The susceptibility of large and small granules of waxy, normal and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures[J]. Food Research International,2013,51(2):771−782. doi: 10.1016/j.foodres.2013.01.057
    [30]
    CHEN B Y, GUO Z B, MIAO S, et al. Preparation and characterization of lotus seed starch-fatty acid complexes formed by microfluidization[J]. Journal of Food Engineering,2018,237(237):52−59.
    [31]
    CORREIA P R, NUNES M C, BEIRAO-DA-COSTA M L. The effect of starch isolation method on physical and functional properties of Portuguese nuts starches. I. Chestnuts (Castanea sativa Mill. var. Martainha and Longal) fruits[J]. Food Hydrocolloids,2012,27(1):256−263. doi: 10.1016/j.foodhyd.2011.05.010
    [32]
    RAPHAELIDES S N, GEORGIADIS N. Effect of fatty acids on the rheological behaviour of pea starch dispersions during heating[J]. Food Research International,2008,41(1):75−88. doi: 10.1016/j.foodres.2007.10.004
    [33]
    KAUR K, SINGH N. Amylose-lipid complex formation during cooking of rice flour[J]. Food Chemistry,2000,71(4):511−517. doi: 10.1016/S0308-8146(00)00202-8
    [34]
    肖遥, 曹悦, 任顺成, 等. 多酚与玉米淀粉相互作用研究[J]. 河南工业大学学报(自然科学版),2020,41(1):45−51. [XIAO Yao, CAO Yue, REN Shuncheng, et al. Study on the interaction between polyphenols and corn starch[J]. Journal of Henan University of Technology (Natural Science Edition),2020,41(1):45−51.
    [35]
    高金梅, 黄倩, 郭洪梅, 等. 冻融循环处理对玉米淀粉凝胶结构及颗粒理化特性的影响[J]. 现代食品科技,2017,33(2):181−189. [GAO Jinmei, HUANG Qian, GUO Hongmei, et al. Effects of freeze-thaw cycles on the gel structure and granule physicochemical properties of corn starch[J]. Modern Food Science and Technology,2017,33(2):181−189.
    [36]
    陈平生, 黄智君, 王娟. 不同热处理方式对大蕉抗消化淀粉理化性质的影响[J]. 现代食品科技,2012,28(1):9−13. [CHEN Pingsheng, HUANG Zhijun, WANG Juan. Effects of different heat treatment methods on the physicochemical properties of plantain resistant starch[J]. Modern Food Science and Technology,2012,28(1):9−13.
    [37]
    程冰, 张乐乐, 安艳霞, 等. 马铃薯抗性淀粉结构特征及体外消化特性的研究[J]. 食品安全质量检测学报,2021,12(17):6975−6981. [CHENG Bing, ZHANG Lele, AN Yanxia, et al. Structural characteristics and in vitro digestion characteristics of potato resistant starch[J]. Journal of Food Safety and Quality Inspection,2021,12(17):6975−6981.
    [38]
    李光磊, 刘秀芳, 曾洁. 抗性淀粉分子结构特征研究[J]. 食品工业科技,2008(8):156−159. [LI Guanglei, LIU Xiufang, ZENG Jie. Molecular structure characteristics of resistant starch[J]. Science and Technology of Food Industry,2008(8):156−159.
    [39]
    CHEN L, TIAN Y, SU B, et al. Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD[J]. Food Chemistry,2018,242(MAR.1):131−138.
    [40]
    褚绍言, 孙冰华, 马森, 等. 淀粉粒径对小麦淀粉-月桂酸复合物结构及消化性的影响[J]. 河南工业大学学报(自然科学版),2021,42(5):21−29. [CHU Shaoyan, SUN Binghua, MA Sen, et al. Effects of starch particle size on the structure and digestibility of wheat starch-lauric acid complexes[J]. Journal of Henan University of Technology (Natural Science Edition),2021,42(5):21−29.
    [41]
    LI W, WU G, LUO Q, et al. Effects of removal of surface proteins on physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat[J]. Journal of Food Science & Technology,2016,53(6):2673−2685.
    [42]
    KIM H S, HUBER K C. Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch[J]. Journal of Cereal Science,2010,51(3):256−264. doi: 10.1016/j.jcs.2009.11.015
    [43]
    ZHANG B, LI X, JIA L, et al. Supramolecular structure of A- and B-type granules of wheat starch[J]. Food Hydrocolloids,2013,31(1):68−73. doi: 10.1016/j.foodhyd.2012.10.006
    [44]
    陈海华, 王雨生, 王慧云, 等. 脂肪酸碳链长度与不饱和度对脂肪酸-普通玉米淀粉包合物体外消化性质的影响[J]. 现代食品科技,2016,32(2):19−26. [CHEN Haihua, WANG Yusheng, WANG Huiyun, et al. Effects of fatty acid carbon chain length and unsaturation on in vitro digestibility of fatty acid-common cornstarch inclusion complexes[J]. Modern Food Science and Technology,2016,32(2):19−26.
  • Cited by

    Periodical cited type(20)

    1. 陆源添,刘迪. 杨树桑黄与紫孢侧耳共培养胞内多糖提取工艺优化及抗氧化活性分析. 食品工业科技. 2025(02): 208-217 . 本站查看
    2. 李明櫆,王梦娜,李占峰,彭帮柱. 基于加热回流法的香菇多糖提取工艺优化及其产品研发. 食品科技. 2024(03): 210-216 .
    3. 闫帅. 玫瑰多糖的提取纯化、结构表征、生物活性及应用研究进展. 食品与机械. 2024(10): 236-242 .
    4. 李臣亮,蔡雪莹,杨安慧. 黑虎掌菌的化学成分及其药理作用研究进展. 生物技术通报. 2024(11): 24-33 .
    5. 王晓岩,李刚,孔凡丽. 多脂鳞伞多糖对H22荷瘤小鼠抗肿瘤作用. 食用菌学报. 2023(01): 45-52 .
    6. 戴玉成. 中国多孔菌驯化栽培研究进展. 菌物研究. 2023(Z1): 151-156 .
    7. 王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化. 湖南农业科学. 2023(02): 1-6 .
    8. 张璐,李翘楚,王增利,丁强,王鸿磊. 金耳类酵母型菌株分离与高产胞外多糖培养基优化. 浙江农业学报. 2023(05): 1154-1160 .
    9. 桑雨梅,高郁超,武济萍,葛少钦,薛宏坤. 食用真菌多糖提取、纯化及结构表征研究进展. 食品研究与开发. 2023(13): 210-218 .
    10. 郑伊琦,张安强,张小军,梅光明,何鹏飞. 响应面优化猪苓菌核多糖超声辅助提取工艺及抗氧化活性分析. 食品工业科技. 2023(16): 255-263 . 本站查看
    11. 杨敏,奚军伟. 黑藜麦多糖超声辅助提取工艺及其抗氧化活性、稳定性研究. 湖北农业科学. 2023(08): 160-166 .
    12. 王常贵,谭智杰,张巧毅,赵柔,黄婷,林元山. 一株产多糖真菌的筛选、鉴定与发酵条件优化(英文). Agricultural Science & Technology. 2023(03): 54-62 .
    13. 宋鹏炜,孙畅,丁强,王鸿磊. 裂褶菌高产胞外多糖发酵培养基优化及生物活性研究. 饲料研究. 2023(22): 86-91 .
    14. 李静,李雪婷,刘人鸣,王羽,朴京培,郭海勇. 榆耳主要活性成分及其生物学功能研究进展. 食品研究与开发. 2023(24): 193-200 .
    15. 秦瑞博,成玉飞,陈嫒,文明佳,何嘉,杜昕. 表面活性剂辅助酶法提取茶树菇多糖工艺研究. 生物化工. 2023(06): 80-84+101 .
    16. 杨彤,孙静,郝宸,王建瑞,刘宇. 盐胁迫下六妹羊肚菌菌丝体的理化性状. 食品与发酵工业. 2022(18): 162-167 .
    17. 冯小飞,朗丹,寸孟人,胡珊苑,余浪,杨斌. 2株野生木耳液体培养方法优化及其胞内多糖的抗氧化活性分析. 西南林业大学学报(自然科学). 2022(05): 96-103 .
    18. 莫翠园,盛丽,刘若凡,郝梅,马爱民. 虎奶菇多糖提取工艺优化、结构鉴定及抗氧化活性研究. 食品科技. 2022(09): 156-163 .
    19. 李兴恺,张耀根,姚皓昱,丁一飞,王诗雨,王燕玲,孙涛,雷鹏,徐虹,王瑞. 毛韧革菌胞外多糖的结构表征、抗氧化活性研究及发酵条件优化. 食品与发酵工业. 2022(21): 36-41 .
    20. 梅承翰,张丽英,张冰梅,陈蓓蓓. 红托竹荪多糖组分和生物活性研究进展. 中国食用菌. 2022(11): 8-11+17 .

    Other cited types(20)

Catalog

    Article Metrics

    Article views (260) PDF downloads (15) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return