Citation: | GAN Xiao, ZHAO Ling, WU Qian, et al. Effects of Oxidation and Different Ionic Environment on the Binding of Pork Myofibrillar Protein to Flavor Substances[J]. Science and Technology of Food Industry, 2022, 43(23): 35−41. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010139. |
[1] |
甘潇, 李洪军, 王兆明, 等. KCl部分替代NaCl对腊肉蛋白质氧化, 降解及质构的影响[J]. 食品与发酵工业,2019,45(4):167−173. [GAN X, LI H J, WANG Z M, et al. Effects of partial substitution of NaCl by KCl on protein oxidation, degradation and texture of bacon[J]. Food and Fermentation Industries,2019,45(4):167−173.
|
[2] |
殷小钰, 刘昊天, 邹汶蓉, 等. 肌肉蛋白与挥发性风味物质的相互作用机制及影响因素研究进展[J]. 食品科学,2020,41(15):288−294. [YIN X Y, LIU H T, ZOU W R, et al. Research progress on the mechanism and influencing factors of interaction between muscle protein and volatile flavor substances[J]. Food Science,2020,41(15):288−294.
|
[3] |
ZHOU F B, ZHAO M M, SU G W, et al. Binding of aroma compounds with myofibrillar proteins modified by a hydroxyl-radical-induced oxidative system[J]. J Agric Food Chem,2014,62(39):9544−9552. doi: 10.1021/jf502540p
|
[4] |
WANG H T, ZHU J M, ZHANG H W, et al. Understanding interactions among aldehyde compounds and porcine myofibrillar proteins by spectroscopy and molecular dynamics simulations[J]. Journal of Molecular Liquids,2022,349:118190. doi: 10.1016/j.molliq.2021.118190
|
[5] |
SHEN H, ZHAO M M, SUN W Z. Effect of pH on the interaction of porcine myofibrillar proteins with pyrazine compounds[J]. Food Chemistry,2019,287:93−99. doi: 10.1016/j.foodchem.2019.02.060
|
[6] |
GU S Q, DAI W L, CHONG Y Q, et al. The binding of key fishy off-flavor compounds to silver carp proteins: A thermodynamic analysis[J]. RSC Advances,2020,10(19):11292−11299. doi: 10.1039/D0RA01365J
|
[7] |
ZHANG J, KANG D C, ZHANG W G, et al. Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors[J]. Trends in Food Science & Technology,2021,111:405−425.
|
[8] |
GAN X, LI H J, WANG Z M, et al. Does protein oxidation affect proteolysis in low sodium Chinese traditional bacon processing[J]. Meat science,2019,150:14−22. doi: 10.1016/j.meatsci.2018.10.007
|
[9] |
WANG L, ZHANG M, FANG Z X, et al. Gelation properties of myofibrillar protein under malondialdehyde-induced oxidative stress[J]. Journal of the Science of Food and Agriculture,2017,97(1):50−57. doi: 10.1002/jsfa.7680
|
[10] |
WANG Z, HE Z F, EMARA A M, et al. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat[J]. Food Chemistry,2019,288:405−412. doi: 10.1016/j.foodchem.2019.02.126
|
[11] |
WANG Z M, HE Z F, GAN X, et al. Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage[J]. Meat Science,2018,146:131−139. doi: 10.1016/j.meatsci.2018.08.006
|
[12] |
JIANG W X, HE Y F, XIONG S B, et al. Effect of mild ozone oxidation on structural changes of silver carp (Hypophthalmichthys molitrix) myosin[J]. Food and Bioprocess Technology,2017,10(2):370−378. doi: 10.1007/s11947-016-1828-5
|
[13] |
CHELH I, GATELLIER P, SANTE-LHOUTELLIER V. A simplified procedure for myofibril hydrophobicity determination[J]. Meat Science,2006,74(4):681−683. doi: 10.1016/j.meatsci.2006.05.019
|
[14] |
曹云刚, 马文慧, 艾娜丝, 等. 氧化强度对肌原纤维蛋白结构及凝胶性能的影响[J]. 食品科学,2019,40(20):21−27. [CAO Y G, MA W H, AI N S, et al. Effect of oxidation strength on structure and gel properties of myofibrillar protein[J]. Food Science,2019,40(20):21−27.
|
[15] |
PEREZJUAN M, FLORES M, TOLDRA F. Model studies on the efficacy of protein homogenates from raw pork muscle and dry-cured ham in binding selected flavor compounds[J]. Journal of Agricultural and Food Chemistry,2006,54(13):4802−4808. doi: 10.1021/jf060374x
|
[16] |
SUN W, ZHAO Q, ZHAO H, et al. Volatile compounds of Cantonese sausage released at different stages of processing and storage[J]. Food Chemistry,2010,121(2):319−325. doi: 10.1016/j.foodchem.2009.12.031
|
[17] |
ESTEVEZ M, MORCUENDE D, VENTANAS S, et al. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS[J]. Journal of Agricultural and Food Chemistry,2003,51(11):3429−3435. doi: 10.1021/jf026218h
|
[18] |
BAO Z J, WU J P, CHENG Y J, et al. Effects of lipid peroxide on the structure and gel properties of ovalbumin[J]. Process Biochemistry,2017,57:124−130. doi: 10.1016/j.procbio.2017.03.009
|
[19] |
ZHOU L, ZHANG Y, ZHAO C, et al. Structural and functional properties of rice bran protein oxidized by peroxyl radicals[J]. International Journal of Food Properties,2017,20(sup2):1456−1467.
|
[20] |
DOMIINGUEZ R, PATEIRO M, MUNEKATA P E S, et al. Protein oxidation in muscle foods: A comprehensive review[J]. Antioxidants,2021,11(1):60. doi: 10.3390/antiox11010060
|
[21] |
周非白. 氧化修饰对猪肉肌原纤维蛋白结构与功能特性的调控研究[D]. 广州: 华南理工大学, 2016
ZHOU F B. Effects of oxidative modification on structural and functional properties of pork myofibrin[D]. Guangzhou: South China University of Technology, 2016.
|
[22] |
WEN R X, HU Y Y, ZHANG L, et al. Effect of NaCl substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage[J]. Meat Science,2019,156:33−43. doi: 10.1016/j.meatsci.2019.05.011
|
[23] |
马国源. 低剂量亚硝酸钠抑制牦牛肉肌红蛋白氧化的作用机制[D]. 兰州: 甘肃农业大学, 2021
MA G Y. Mechanism of low dose sodium nitrite inhibiting myoglobin oxidation in yak meat[D]. Lanzhou: Gansu Agricultural University, 2021.
|
[24] |
BAO Y, ERTBJERG P. Effects of protein oxidation on the texture and water-holding of meat: A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(22):3564−3578. doi: 10.1080/10408398.2018.1498444
|
[25] |
DAVIES M J. Protein oxidation and peroxidation[J]. Biochemical Journal,2016,473(Pt7):805−825.
|
[26] |
ZHANG W, XIAO S, AHN D U. Protein oxidation: Basic principles and implications for meat quality[J]. Critical Reviews in Food Science and Nutrition,2013,53(11):1191−1201. doi: 10.1080/10408398.2011.577540
|
[27] |
ZHANG Z Y, YANG Y L, ZHOU P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry,2017,217:678−686. doi: 10.1016/j.foodchem.2016.09.040
|
[28] |
WANG Z M, HE Z F, ZHANG D, et al. Effect of multiple freeze-thaw cycles on protein and lipid oxidation in rabbit meat[J]. International Journal of Food Science & Technology,2021,56(6):3004−3015.
|
[29] |
HASSOUN A, SAHAR A, LAKHAL L, et al. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions[J]. LWT,2019,103:279−292. doi: 10.1016/j.lwt.2019.01.021
|
[30] |
FUENTES-LEMUS E, DORTA E, ESCOBAR E, et al. Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: Role of alkoxyl and peroxyl radicals[J]. RSC Adv,2016,6(63):57948−57955. doi: 10.1039/C6RA12859A
|
[31] |
DIAO X Q, GUAN H N, ZHAO X X, et al. Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lard diacylglycerols[J]. Meat Science,2016,121:333−341. doi: 10.1016/j.meatsci.2016.07.002
|
[32] |
JIA N, WANG L T, SHAO J H, et al. Changes in the structural and gel properties of pork myofibrillar protein induced by catechin modification[J]. Meat Science,2017,127:45−50. doi: 10.1016/j.meatsci.2017.01.004
|
[33] |
LEINISCH F, MARIOTTI M, RYKAER M, et al. Peroxyl radical-and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues[J]. Free Radical Biology and Medicine 2017, 112: 240-252.
|
[34] |
MARIA P J, MONICA F, FIDEL T. Effect of ionic strength of different salts on the binding of volatile compounds to porcine soluble protein extracts in model systems[J]. Food Research International,2007,40(6):687−693. doi: 10.1016/j.foodres.2006.11.013
|