Citation: | HUANG Caihuan, LI Dan, LONG Chengyan, et al. Mechanism of Acrylamide Elimination by Cysteine and Its Application in Potato Chips[J]. Science and Technology of Food Industry, 2022, 43(22): 287−295. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010130. |
[1] |
RIFAI L, SALEH F A. A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies[J]. International Journal of Toxicology,2020,39(2):93−102. doi: 10.1177/1091581820902405
|
[2] |
KUMAR J, DAS S, TEOH S L. Dietary acrylamide and the risks of developing cancer: Facts to ponder[J]. Frontiers in Nutrition,2018,5:14. doi: 10.3389/fnut.2018.00014
|
[3] |
HASHEM M M, ABO-EL-SOOUD K, ABD EL-HAKIM Y M, et al. The impact of long-term oral exposure to low doses of acrylamide on the hematological indicators, immune functions, and splenic tissue architecture in rats[J]. International Immunopharmacology,2022,105:108568. doi: 10.1016/j.intimp.2022.108568
|
[4] |
MOUSAVI K A, FAKHRI Y, NEMATOLLAHI A, et al. The concentration of acrylamide in different food products: A global systematic review, meta-analysis, and meta-regression[J]. Food Reviews International,2020:1−19.
|
[5] |
HIRVONEN T, JESTOI M, TAPANAINEN H, et al. Dietary acrylamide exposure among finnish adults and children: The potential effect of reduction measures[J]. Food Additives & Contaminants: Part A,2011,28(11):1483−1491.
|
[6] |
MOLLAKHALILI M N, KHORSHIDIAN N, NEMATOLLAHI A, et al. Acrylamide in bread: A review on formation, health risk assessment, and determination by analytical techniques[J]. Environmental Science and Pollution Research,2021,28(13):15627−15645. doi: 10.1007/s11356-021-12775-3
|
[7] |
LIYANAGE D W, YEVTUSHENKO D P, KONSCHUH M, et al. Processing strategies to decrease acrylamide formation, reducing sugars and free asparagine content in potato chips from three commercial cultivars[J]. Food Control,2021,119:107452. doi: 10.1016/j.foodcont.2020.107452
|
[8] |
KRISHNAKUMAR T, VISVANATHAN R. Acrylamide in food products: A review[J]. Journal of Food Processing & Technology,2014,5(7):1.
|
[9] |
YOSHIOKA T, IZUMI Y, TAKAHASHI M, et al. Identification of acrylamide adducts generated during storage of canned milk coffee[J]. Journal of Agricultural and Food Chemistry,2020,68(12):3859−3867. doi: 10.1021/acs.jafc.9b08139
|
[10] |
MUNIR N, ZIA M A, SHARIF S, et al. L-asparaginase potential in acrylamide mitigation from foodstuff: A mini-review[J]. Progress in Nutrition,2019,21(3):498−506.
|
[11] |
MILDNER-SZKUDLARZ S, RÓŻAŃSKA M, PIECHOWSKA P, et al. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system[J]. Food Chemistry,2019,297:125008. doi: 10.1016/j.foodchem.2019.125008
|
[12] |
KHORSHIDIAN N, YOUSEFI M, SHADNOUSH M, et al. Using probiotics for mitigation of acrylamide in food products: A mini review[J]. Current Opinion in Food Science,2020,32:67−75. doi: 10.1016/j.cofs.2020.01.011
|
[13] |
国家卫生和计划生育委员会. 食品安全国家标准 食品添加剂使用标准 GB 2760-2014[S]. 北京: 中国出版社, 2015
National Health and Family Planning Commission. National standard for food safety: Standard for use of food additives GB 2760-2014[S]. Beijing: China Publishing House, 2015.
|
[14] |
汪多仁. 有机食品营养强化剂[M]. 上海: 科技文献出版社, 2008
WANG D R. Organic food nutritional fortifier[M]. Shanghai: Science and Technology Literature Press, 2008.
|
[15] |
ZOU Y, HUANG C, PEI K, et al. Cysteine alone or in combination with glycine simultaneously reduced the contents of acrylamide and hydroxymethylfurfural[J]. LWT-Food Science and Technology,2015,63(1):275−280. doi: 10.1016/j.lwt.2015.03.104
|
[16] |
YU M, OU S, LIUMENGZI D, et al. Effect of ten amino acids on elimination of acrylamide in a model reaction system[J]. African Journal of Food Science,2013,7(9):329−333. doi: 10.5897/AJFS2013.1031
|
[17] |
JIANG K, HUANG C, JIAO R, et al. Adducts formed during protein digestion decreased the toxicity of five carbonyl compounds against Caco-2 cells[J]. Journal of Hazardous Materials,2019,363:26−33. doi: 10.1016/j.jhazmat.2018.09.053
|
[18] |
邹照佳, 郑洁, 黄才欢, 等. 丙烯醛-丙氨酸加合物制备与细胞毒性[J]. 食品科学,2021,42(9):1−6. [ZHOU Z J, ZHENG J, HUANG C H, et al. Preparation and cytotoxicity of acrolein alanine adduct[J]. Food Science,2021,42(9):1−6. doi: 10.7506/spkx1002-6630-20200410-141
|
[19] |
HU J, JIANG K, HUANG C, et al. Glycine and serine markedly eliminate methylglyoxal in the presence of formaldehyde via the formation of imidazole salts[J]. Food Chemistry,2022,369:130952. doi: 10.1016/j.foodchem.2021.130952
|
[20] |
ZOU Z, YIN Z, OU J, et al. Identification of adducts formed between acrolein and alanine or serine in fried potato crisps and the cytotoxicity-lowering effect of acrolein in three cell lines[J]. Food Chemistry,2021,361:130164. doi: 10.1016/j.foodchem.2021.130164
|
[21] |
郭鸿阳, 李瑞阳, 刘启辉, 等. L-半胱氨酸对油炸薯片中有害醛、AGEs的抑制作用及其品质的改善效果[J]. 食品科学,2022,43(4):60−68. [GUO H Y, LI R Y, LIU Q H, et al. Inhibitory effect of L-cysteine on harmful aldehydes and AGEs in fried potato chips and its quality improvement[J]. Food Science,2022,43(4):60−68.
|
[22] |
刘刚, 王毅, 王鑫, 等. 液相色谱串联质谱法测定加工食品中丙烯酰胺的含量[J]. 西华大学学报(自然科学版),2021,40(2):97−102. [LIU G, WANG Y, WANG X, et al. Determination of acrylamide in processed food by liquid chromatography tandem mass spectrometry[J]. Journal of Xihua University (Natural Science Edition),2021,40(2):97−102. doi: 10.12198/j.issn.1673-159X.3399
|
[23] |
KOBAYASHI A, GOMIKAWA S, YAMAZAKI A, et al. Elimination of acrylamide by moderate heat treatment below 120 ℃ with lysine and cysteine[J]. Food Science and Technology Research,2014,20(5):979−985. doi: 10.3136/fstr.20.979
|
[24] |
OU J, ZHENG J, HUANG J, et al. Interaction of acrylamide, acrolein, and 5-hydroxymethylfurfural with amino acids and DNA[J]. Journal of Agricultural and Food Chemistry,2020,68(18):5039−5048. doi: 10.1021/acs.jafc.0c01345
|
[25] |
LIM H H, SHIN H S. A new derivatization approach with d-cysteine for the sensitive and simple analysis of acrylamide in foods by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2014,1361:117−124. doi: 10.1016/j.chroma.2014.07.094
|
[26] |
SCHWEND T, SCHABACKER J, WETTERAUER B, et al. Uptake of S-(3-amino-3-oxopropyl)-cysteine by Caco-2 cells[J]. Zeitschrift für Naturforschung C,2008,63(11-12):913−918.
|
[27] |
ZAMORA R, DELGADO R M, HIDALGO F J. Model reactions of acrylamide with selected amino compounds[J]. Journal of Agricultural and Food Chemistry,2010,58(3):1708−1713. doi: 10.1021/jf903378x
|
[28] |
ADAMS A, HAMDANI S, LANCKER F V, et al. Stability of acrylamide in model systems and its reactivity with selected nucleophiles[J]. Food Research International,2010,43(5):1517−1522. doi: 10.1016/j.foodres.2010.04.033
|
[29] |
BENT G A, MARAGH P, DASGUPTA T, et al. Kinetic and density functional theory (DFT) studies of in vitro reactions of acrylamide with the thiols: Captopril, l-cysteine, and glutathione[J]. Toxicology Research,2015,4(1):121−131. doi: 10.1039/C4TX00070F
|