HUANG Hai, YANG Xiang, XIA Wei, et al. Structural Analysis and Immunomodulatory Effects of Pectic Polysaccharides Separated from Jasminum sambac Flower Waste[J]. Science and Technology of Food Industry, 2022, 43(18): 399−407. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010106.
Citation: HUANG Hai, YANG Xiang, XIA Wei, et al. Structural Analysis and Immunomodulatory Effects of Pectic Polysaccharides Separated from Jasminum sambac Flower Waste[J]. Science and Technology of Food Industry, 2022, 43(18): 399−407. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010106.

Structural Analysis and Immunomodulatory Effects of Pectic Polysaccharides Separated from Jasminum sambac Flower Waste

More Information
  • Received Date: January 13, 2022
  • Available Online: July 06, 2022
  • In order to explore the structural characteristics and immunomodulatory effects of pectic polysaccharides in Jasminum sambac flower waste, two polysaccharides, JSP-3 and JSP-4, were separated by water extraction, alcohol precipitation, deproteinization, anion exchange chromatography and gel chromatography. Its structural characteristics were analyzed with relative weight average molecular weight, monosaccharide composition, partial acid hydrolysis-LC-MS and NMR. Finally, the immunomodulatory effects of two polysaccharides were studied by using murine macrophage RAW 264.7 as a model, and measuring the effects on proliferation, phagocytosis, ROS production and secretion of NO, TNF-α and IL-6. The results showed that JSP-3 and JSP-4 were two homogeneous polysaccharides with relative molecular weights of 15.48 kDa and 44.75 kDa, respectively, mainly composed of galacturonic acid, rhamnose, galactose and arabinose, with different proportions of galacturonan domain (JSP-3: 32.87%±3.53%, JSP-4: 68.64%±0.67%) and rhamnogalacturonan domain (JSP-3: 61.12%±3.37%, JSP-4: 28.28%±0.46%), indicating that both are pectic polysaccharides. Compared with the control group, JSP-3 and JSP-4 have no cytotoxic effect within 12.5~100 μg/mL. At a certain concentration, it increased the production of ROS and the secretion of NO, TNF-α and IL-6, also promoted the phagocytosis of mouse macrophages significantly (P<0.05). At the same concentration, JSP-4 could stimulate cells to secrete more NO, TNF-α and IL-6 than JSP-3, indicating that JSP-4 had a stronger immunoregulatory effect, which might be associated with its higher proportion of galacturonan domain and relative molecular weight. The above research results preliminarily proved the immunomodulatory effect of pectic polysaccharide from Jasminum sambac flower waste, and would provide a basis for its potential application in immunomodulators.
  • [1]
    安会敏, 欧行畅, 熊一帆, 等. 茉莉花茶挥发性成分在窨制过程中的变化研究[J]. 茶叶通讯,2020,47(1):67−74. [AN H M, OU X C, XIONG Y F, et al. Study on the change of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication,2020,47(1):67−74. doi: 10.3969/j.issn.1009-525X.2020.01.013

    AN H M, OU X C, XIONG Y F, et al. Study on the change of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication, 2020, 47(1): 67-74. doi: 10.3969/j.issn.1009-525X.2020.01.013
    [2]
    唐雅园, 何雪梅, 孙健 等. 茉莉花非挥发性成分及其功能活性研究进展[J]. 食品研究与开发,2021,42(11):189−195. [TANG Y Y, HE X M, SUN J, et al. Research progress in non-volatile components and d functional activities of Jasminum sambac (L. ) Aiton[J]. Food Research and Development,2021,42(11):189−195. doi: 10.12161/j.issn.1005-6521.2021.11.030

    TANG Y Y, HE X M, SUN J, et al. Research progress in non-volatile components and d functional activities of Jasminum sambac (L. ) Aiton[J]. Food Research and Development, 2021, 42(11): 189-195. doi: 10.12161/j.issn.1005-6521.2021.11.030
    [3]
    刘威. 茉莉花渣的综合利用研究进展[J]. 湖南农业科学,2017,56(1):112−114. [LIU W. Research progress in comprehensive utilization of jasmine flower residues[J]. Hunan Agricultural Sciences,2017,56(1):112−114. doi: 10.16498/j.cnki.hnnykx.2017.001.028

    LIU W. Research progress in comprehensive utilization of jasmine flower residues[J]. Hunan Agricultural Sciences, 2017(1): 112-114. doi: 10.16498/j.cnki.hnnykx.2017.001.028
    [4]
    韦英亮, 崔建国, 范磊. 茉莉花渣资源高值化利用探讨[J]. 化工技术与开发,2008,46(4):44−46,13. [WEI Y L, CUI J G, FAN L. Research of higher value application for Jasminum sambac waste[J]. Technology Development of Chemical Industry,2008,46(4):44−46,13. doi: 10.3969/j.issn.1671-9905.2008.04.013

    WEI Y L, CUI J G, FAN L. Research of higher value application for Jasminum sambac waste[J]. Technology Development of Chemical Industry, 2008(4): 44-46, 13. doi: 10.3969/j.issn.1671-9905.2008.04.013
    [5]
    TANG Y Y, SHENG J F, HE X M, et al. Novel antioxidant and hypoglycemic water-soluble polysaccharides from jasmine tea[J]. Foods,2021,10(10):2375. doi: 10.3390/foods10102375
    [6]
    邹瑶, 齐桂年, 陈盛相 等. 茉莉花渣多糖的提取分离及抗氧化作用[J]. 四川农业大学学报,2012,30(1):78−81. [ZOU Y, QI G N, CHEN S X, et al. Extraction, separation and anti-oxidation activity of polysaccharide from jasmine dried residue[J]. Journal of Sichuan Agricultural University,2012,30(1):78−81. doi: 10.3969/j.issn.1000-2650.2012.01.015

    ZOU Y, QI G N, CHEN S X, et al. Extraction, separation and anti-oxidation activity of polysaccharide from jasmine dried residue[J]. Journal of Sichuan Agricultural University, 2012, 30(1): 78-81. doi: 10.3969/j.issn.1000-2650.2012.01.015
    [7]
    邹瑶, 齐桂年. 茉莉花渣多糖降血糖、改善糖尿病症状作用的研究[J]. 食品科技,2011,36(2):157−160. [ZOU Y, QI G N. The hypoglycemic activity and improvement of diabetic symptoms of polysaccharides from jasmine dried residue on diabetic mellitus mice[J]. Food Science and Technology,2011,36(2):157−160. doi: 10.13684/j.cnki.spkj.2011.02.068

    ZOU Y, QI G N. The hypoglycemic activity and improvement of diabetic symptoms of polysaccharides from jasmine dried residue on diabetic mellitus mice[J]. Food Science and Technology, 2011, 36(2): 157-160. doi: 10.13684/j.cnki.spkj.2011.02.068
    [8]
    王密, 蒋昀靓, 邝晓聪 等. 茉莉花、茉莉花茶提取液对部分免疫效应的影响[J]. 中国病理生理杂志,2011,27(7):1428−1430. [WANG M, JIANG Y L, KUANG X C, et al. Effects of jasmine tea extracts on fuctions of mouse immune cells[J]. Chinese Journal of Pathophysiology,2011,27(7):1428−1430. doi: 10.3969/j.issn.1000-4718.2011.07.034

    WANG M, JIANG Y L, KUANG X C, et al. Effects of jasmine tea extracts on fuctions of mouse immune cells[J]. Chinese Journal of Pathophysiology, 2011, 27(7): 1428-1430. doi: 10.3969/j.issn.1000-4718.2011.07.034
    [9]
    WU J J, XU Y B, SU J, et al. Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity[J]. Carbohydrate Polymers,2020,248:116780. doi: 10.1016/j.carbpol.2020.116780
    [10]
    WU M Q, LI W, ZHANG Y L, et al. Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste[J]. Carbohydrate Polymers,2021,253:117190. doi: 10.1016/j.carbpol.2020.117190
    [11]
    MZOUGHI Z, MAJDOUB H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials[J]. International Journal of Biological Macromolecules,2021,173:554−579. doi: 10.1016/j.ijbiomac.2021.01.144
    [12]
    LI Z, BRATLIE K M. The influence of polysaccharides-based material on macrophage phenotypes[J]. Macromolecular Bioscience,2021,21(8):2100031. doi: 10.1002/mabi.202100031
    [13]
    CHEN S C, KHAN B M, CHEONG K L, et al, Pumpkin polysaccharides: Purification, characterization and hypoglycemic potential[J]. International Journal of Biological Macromolecules, 2019, 139: 842-849.
    [14]
    ZHANG W H, WU J, WENG L Y, et al. An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate[J]. Carbohydrate Polymers,2020,227:115332. doi: 10.1016/j.carbpol.2019.115332
    [15]
    王佳, 李进霞, 张慧芝 等. 虎杖多糖乙醇分级纯化及其抗氧化性[J]. 食品工业科技,2019,40(1):92−95. [WANG J, LI J X, ZHANG H Z, et al. Ethanol fractional purification and antioxidant activities of polysaccharides from Polygonum cuspidatum[J]. Science and Technology of Food Industry,2019,40(1):92−95. doi: 10.13386/j.issn1002-0306.2019.01.017

    WANG J, LI J X, ZHANG H Z, et al. Ethanol fractional purification and antioxidant activities of polysaccharides from Polygonum cuspidatum[J]. Science and Technology of Food Industry, 2019, 40(1): 92-95. doi: 10.13386/j.issn1002-0306.2019.01.017
    [16]
    邓丽莉, 潘晓倩, 生吉萍 等. 考马斯亮蓝法测定苹果组织微量可溶性蛋白含量的条件优化[J]. 食品科学,2012,33(24):185−189. [DENG L L, PAN X Q, SHENG J P, et al. Optimization of experimental conditions for the determination of water soluble protein in apple pulp using Coomassie brilliant blue method[J]. Food Science,2012,33(24):185−189. doi: 10.7506/spkx1002-6630-201224038

    DENG L L, PAN X Q, SHENG J P, et al. Optimization of experimental conditions for the determination of water soluble protein in apple pulp using Coomassie brilliant blue method[J]. Food Science, 2012, 33(24): 185-189. doi: 10.7506/spkx1002-6630-201224038
    [17]
    KLAVONS J A, BENNETT R D. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins[J]. Journal of Agricultural and Food Chemistry,1986,34(4):597−599. doi: 10.1021/jf00070a004
    [18]
    ZHU M Q, HUANG R M, WEN P, et al. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels[J]. Carbohydrate Polymers,2021,254:117371. doi: 10.1016/j.carbpol.2020.117371
    [19]
    LI S S, YANG G, YAN J M, et al. Polysaccharide structure and immunological relationships of RG-I pectin from the bee pollen of Nelumbo nucifera[J]. International Journal of Biological Macromolecules,2018,111:660−666. doi: 10.1016/j.ijbiomac.2018.01.015
    [20]
    XIONG B Y, ZHANG W C, WU Z Y, et al. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L. )[J]. International Journal of Biological Macromolecules,2021,181:824−834. doi: 10.1016/j.ijbiomac.2021.03.202
    [21]
    ZHU Y L, HE Z X, BAO X Y, et al. Purification, in-depth structure analysis and antioxidant stress activity of a novel pectin-type polysaccharide from Ziziphus jujuba cv. Muzao residue[J]. Journal of Functional Foods,2021,80:104439. doi: 10.1016/j.jff.2021.104439
    [22]
    WANG N F, ZHANG X J, WANG S W, et al. Structural characterisation and immunomodulatory activity of polysaccharides from white asparagus skin[J]. Carbohydrate Polymers,2020,227:115314. doi: 10.1016/j.carbpol.2019.115314
    [23]
    ADEREM A, UNDERHILL D M. Mechanisms of phagocytosis in macrophages[J]. Annual Review of Immunology,1999,17:593−623. doi: 10.1146/annurev.immunol.17.1.593
    [24]
    MUÑOZ-ALMAGRO N, VENDRELL-CALATAYUD M, MÉNDEZ-ALBIÑANA P, et al. Extraction optimization and structural characterization of pectin from persimmon fruit (Diospyros kaki Thunb. var. Rojo brillante)[J]. Carbohydrate Polymers,2021,272:118411. doi: 10.1016/j.carbpol.2021.118411
    [25]
    SONG C, HUANG F H, LIU L Y, et al. Characterization and prebiotic properties of pectin polysaccharide from Clausena lansium (Lour. ) Skeels fruit[J]. International Journal of Biological Macromolecules,2022,194:412−421. doi: 10.1016/j.ijbiomac.2021.11.083
    [26]
    REICHEMBACH L H. , DE OLIVEIRA PETKOWICZ C L. Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties[J]. Carbohydrate Polymers,2020,245:116473. doi: 10.1016/j.carbpol.2020.116473
    [27]
    LAI H L, YANG L C, LIN P T, et al. Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system[J]. International Journal of Biological Macromolecules,2020,155:951−960. doi: 10.1016/j.ijbiomac.2019.11.054
    [28]
    YIN M, ZHANG Y, LI H. Advances in research on immunoregulation of macrophages by plant polysaccharides[J]. Frontiers in Immunology,2019,10:145. doi: 10.3389/fimmu.2019.00145
    [29]
    SCIALÒ F, FERNÁNDEZ-AYALA D J, SANZ A. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease[J]. Frontiers in Physiology,2017,8:428. doi: 10.3389/fphys.2017.00428
    [30]
    SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of Cellular Physiology,2018,233(9):6425−6440. doi: 10.1002/jcp.26429
    [31]
    POPOV S V, OVODOVA R G, OVODOV Y S. Effect of lemnan, pectin from Lemna minor L. and its fragments on inflammatory reaction[J]. Phytotherapy Research,2006,20(5):403−407. doi: 10.1002/ptr.1869
    [32]
    HUANG L L, ZHAO J, WEI Y L, et al. Structural characterization and mechanisms of macrophage immunomodulatory activity of a pectic polysaccharide from Cucurbita moschata Duch[J]. Carbohydrate Polymers,2021,269:118288. doi: 10.1016/j.carbpol.2021.118288
    [33]
    ZHANG Q, XU Y, LV J J, et al. Structure characterization of two functional polysaccharides from Polygonum multiflorum and its immunomodulatory[J]. International Journal of Biological Macromolecules,2018,113:195−204. doi: 10.1016/j.ijbiomac.2018.02.064
    [34]
    SATOH T, AKIRA S. Toll-like receptor signaling and its inducible proteins[J]. Microbiology Spectrum, 2016, 4(6).
    [35]
    LI M Z, WEN J J, HUANG X J, et al. Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis[J]. Food Chemistry,2021,374:131586.
  • Cited by

    Periodical cited type(1)

    1. 高子琪,刘秀嶶,李泽林,范方宇,王翰墨,田浩,牛之瑞. 咖啡风味研究动态文献计量学可视化分析. 食品工业科技. 2024(22): 225-235 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (264) PDF downloads (22) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return