HUANG Hai, YANG Xiang, XIA Wei, et al. Structural Analysis and Immunomodulatory Effects of Pectic Polysaccharides Separated from Jasminum sambac Flower Waste[J]. Science and Technology of Food Industry, 2022, 43(18): 399−407. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010106.
Citation: HUANG Hai, YANG Xiang, XIA Wei, et al. Structural Analysis and Immunomodulatory Effects of Pectic Polysaccharides Separated from Jasminum sambac Flower Waste[J]. Science and Technology of Food Industry, 2022, 43(18): 399−407. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010106.

Structural Analysis and Immunomodulatory Effects of Pectic Polysaccharides Separated from Jasminum sambac Flower Waste

More Information
  • Received Date: January 13, 2022
  • Available Online: July 06, 2022
  • In order to explore the structural characteristics and immunomodulatory effects of pectic polysaccharides in Jasminum sambac flower waste, two polysaccharides, JSP-3 and JSP-4, were separated by water extraction, alcohol precipitation, deproteinization, anion exchange chromatography and gel chromatography. Its structural characteristics were analyzed with relative weight average molecular weight, monosaccharide composition, partial acid hydrolysis-LC-MS and NMR. Finally, the immunomodulatory effects of two polysaccharides were studied by using murine macrophage RAW 264.7 as a model, and measuring the effects on proliferation, phagocytosis, ROS production and secretion of NO, TNF-α and IL-6. The results showed that JSP-3 and JSP-4 were two homogeneous polysaccharides with relative molecular weights of 15.48 kDa and 44.75 kDa, respectively, mainly composed of galacturonic acid, rhamnose, galactose and arabinose, with different proportions of galacturonan domain (JSP-3: 32.87%±3.53%, JSP-4: 68.64%±0.67%) and rhamnogalacturonan domain (JSP-3: 61.12%±3.37%, JSP-4: 28.28%±0.46%), indicating that both are pectic polysaccharides. Compared with the control group, JSP-3 and JSP-4 have no cytotoxic effect within 12.5~100 μg/mL. At a certain concentration, it increased the production of ROS and the secretion of NO, TNF-α and IL-6, also promoted the phagocytosis of mouse macrophages significantly (P<0.05). At the same concentration, JSP-4 could stimulate cells to secrete more NO, TNF-α and IL-6 than JSP-3, indicating that JSP-4 had a stronger immunoregulatory effect, which might be associated with its higher proportion of galacturonan domain and relative molecular weight. The above research results preliminarily proved the immunomodulatory effect of pectic polysaccharide from Jasminum sambac flower waste, and would provide a basis for its potential application in immunomodulators.
  • [1]
    安会敏, 欧行畅, 熊一帆, 等. 茉莉花茶挥发性成分在窨制过程中的变化研究[J]. 茶叶通讯,2020,47(1):67−74. [AN H M, OU X C, XIONG Y F, et al. Study on the change of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication,2020,47(1):67−74. doi: 10.3969/j.issn.1009-525X.2020.01.013

    AN H M, OU X C, XIONG Y F, et al. Study on the change of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication, 2020, 47(1): 67-74. doi: 10.3969/j.issn.1009-525X.2020.01.013
    [2]
    唐雅园, 何雪梅, 孙健 等. 茉莉花非挥发性成分及其功能活性研究进展[J]. 食品研究与开发,2021,42(11):189−195. [TANG Y Y, HE X M, SUN J, et al. Research progress in non-volatile components and d functional activities of Jasminum sambac (L. ) Aiton[J]. Food Research and Development,2021,42(11):189−195. doi: 10.12161/j.issn.1005-6521.2021.11.030

    TANG Y Y, HE X M, SUN J, et al. Research progress in non-volatile components and d functional activities of Jasminum sambac (L. ) Aiton[J]. Food Research and Development, 2021, 42(11): 189-195. doi: 10.12161/j.issn.1005-6521.2021.11.030
    [3]
    刘威. 茉莉花渣的综合利用研究进展[J]. 湖南农业科学,2017,56(1):112−114. [LIU W. Research progress in comprehensive utilization of jasmine flower residues[J]. Hunan Agricultural Sciences,2017,56(1):112−114. doi: 10.16498/j.cnki.hnnykx.2017.001.028

    LIU W. Research progress in comprehensive utilization of jasmine flower residues[J]. Hunan Agricultural Sciences, 2017(1): 112-114. doi: 10.16498/j.cnki.hnnykx.2017.001.028
    [4]
    韦英亮, 崔建国, 范磊. 茉莉花渣资源高值化利用探讨[J]. 化工技术与开发,2008,46(4):44−46,13. [WEI Y L, CUI J G, FAN L. Research of higher value application for Jasminum sambac waste[J]. Technology Development of Chemical Industry,2008,46(4):44−46,13. doi: 10.3969/j.issn.1671-9905.2008.04.013

    WEI Y L, CUI J G, FAN L. Research of higher value application for Jasminum sambac waste[J]. Technology Development of Chemical Industry, 2008(4): 44-46, 13. doi: 10.3969/j.issn.1671-9905.2008.04.013
    [5]
    TANG Y Y, SHENG J F, HE X M, et al. Novel antioxidant and hypoglycemic water-soluble polysaccharides from jasmine tea[J]. Foods,2021,10(10):2375. doi: 10.3390/foods10102375
    [6]
    邹瑶, 齐桂年, 陈盛相 等. 茉莉花渣多糖的提取分离及抗氧化作用[J]. 四川农业大学学报,2012,30(1):78−81. [ZOU Y, QI G N, CHEN S X, et al. Extraction, separation and anti-oxidation activity of polysaccharide from jasmine dried residue[J]. Journal of Sichuan Agricultural University,2012,30(1):78−81. doi: 10.3969/j.issn.1000-2650.2012.01.015

    ZOU Y, QI G N, CHEN S X, et al. Extraction, separation and anti-oxidation activity of polysaccharide from jasmine dried residue[J]. Journal of Sichuan Agricultural University, 2012, 30(1): 78-81. doi: 10.3969/j.issn.1000-2650.2012.01.015
    [7]
    邹瑶, 齐桂年. 茉莉花渣多糖降血糖、改善糖尿病症状作用的研究[J]. 食品科技,2011,36(2):157−160. [ZOU Y, QI G N. The hypoglycemic activity and improvement of diabetic symptoms of polysaccharides from jasmine dried residue on diabetic mellitus mice[J]. Food Science and Technology,2011,36(2):157−160. doi: 10.13684/j.cnki.spkj.2011.02.068

    ZOU Y, QI G N. The hypoglycemic activity and improvement of diabetic symptoms of polysaccharides from jasmine dried residue on diabetic mellitus mice[J]. Food Science and Technology, 2011, 36(2): 157-160. doi: 10.13684/j.cnki.spkj.2011.02.068
    [8]
    王密, 蒋昀靓, 邝晓聪 等. 茉莉花、茉莉花茶提取液对部分免疫效应的影响[J]. 中国病理生理杂志,2011,27(7):1428−1430. [WANG M, JIANG Y L, KUANG X C, et al. Effects of jasmine tea extracts on fuctions of mouse immune cells[J]. Chinese Journal of Pathophysiology,2011,27(7):1428−1430. doi: 10.3969/j.issn.1000-4718.2011.07.034

    WANG M, JIANG Y L, KUANG X C, et al. Effects of jasmine tea extracts on fuctions of mouse immune cells[J]. Chinese Journal of Pathophysiology, 2011, 27(7): 1428-1430. doi: 10.3969/j.issn.1000-4718.2011.07.034
    [9]
    WU J J, XU Y B, SU J, et al. Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity[J]. Carbohydrate Polymers,2020,248:116780. doi: 10.1016/j.carbpol.2020.116780
    [10]
    WU M Q, LI W, ZHANG Y L, et al. Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste[J]. Carbohydrate Polymers,2021,253:117190. doi: 10.1016/j.carbpol.2020.117190
    [11]
    MZOUGHI Z, MAJDOUB H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials[J]. International Journal of Biological Macromolecules,2021,173:554−579. doi: 10.1016/j.ijbiomac.2021.01.144
    [12]
    LI Z, BRATLIE K M. The influence of polysaccharides-based material on macrophage phenotypes[J]. Macromolecular Bioscience,2021,21(8):2100031. doi: 10.1002/mabi.202100031
    [13]
    CHEN S C, KHAN B M, CHEONG K L, et al, Pumpkin polysaccharides: Purification, characterization and hypoglycemic potential[J]. International Journal of Biological Macromolecules, 2019, 139: 842-849.
    [14]
    ZHANG W H, WU J, WENG L Y, et al. An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate[J]. Carbohydrate Polymers,2020,227:115332. doi: 10.1016/j.carbpol.2019.115332
    [15]
    王佳, 李进霞, 张慧芝 等. 虎杖多糖乙醇分级纯化及其抗氧化性[J]. 食品工业科技,2019,40(1):92−95. [WANG J, LI J X, ZHANG H Z, et al. Ethanol fractional purification and antioxidant activities of polysaccharides from Polygonum cuspidatum[J]. Science and Technology of Food Industry,2019,40(1):92−95. doi: 10.13386/j.issn1002-0306.2019.01.017

    WANG J, LI J X, ZHANG H Z, et al. Ethanol fractional purification and antioxidant activities of polysaccharides from Polygonum cuspidatum[J]. Science and Technology of Food Industry, 2019, 40(1): 92-95. doi: 10.13386/j.issn1002-0306.2019.01.017
    [16]
    邓丽莉, 潘晓倩, 生吉萍 等. 考马斯亮蓝法测定苹果组织微量可溶性蛋白含量的条件优化[J]. 食品科学,2012,33(24):185−189. [DENG L L, PAN X Q, SHENG J P, et al. Optimization of experimental conditions for the determination of water soluble protein in apple pulp using Coomassie brilliant blue method[J]. Food Science,2012,33(24):185−189. doi: 10.7506/spkx1002-6630-201224038

    DENG L L, PAN X Q, SHENG J P, et al. Optimization of experimental conditions for the determination of water soluble protein in apple pulp using Coomassie brilliant blue method[J]. Food Science, 2012, 33(24): 185-189. doi: 10.7506/spkx1002-6630-201224038
    [17]
    KLAVONS J A, BENNETT R D. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins[J]. Journal of Agricultural and Food Chemistry,1986,34(4):597−599. doi: 10.1021/jf00070a004
    [18]
    ZHU M Q, HUANG R M, WEN P, et al. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels[J]. Carbohydrate Polymers,2021,254:117371. doi: 10.1016/j.carbpol.2020.117371
    [19]
    LI S S, YANG G, YAN J M, et al. Polysaccharide structure and immunological relationships of RG-I pectin from the bee pollen of Nelumbo nucifera[J]. International Journal of Biological Macromolecules,2018,111:660−666. doi: 10.1016/j.ijbiomac.2018.01.015
    [20]
    XIONG B Y, ZHANG W C, WU Z Y, et al. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L. )[J]. International Journal of Biological Macromolecules,2021,181:824−834. doi: 10.1016/j.ijbiomac.2021.03.202
    [21]
    ZHU Y L, HE Z X, BAO X Y, et al. Purification, in-depth structure analysis and antioxidant stress activity of a novel pectin-type polysaccharide from Ziziphus jujuba cv. Muzao residue[J]. Journal of Functional Foods,2021,80:104439. doi: 10.1016/j.jff.2021.104439
    [22]
    WANG N F, ZHANG X J, WANG S W, et al. Structural characterisation and immunomodulatory activity of polysaccharides from white asparagus skin[J]. Carbohydrate Polymers,2020,227:115314. doi: 10.1016/j.carbpol.2019.115314
    [23]
    ADEREM A, UNDERHILL D M. Mechanisms of phagocytosis in macrophages[J]. Annual Review of Immunology,1999,17:593−623. doi: 10.1146/annurev.immunol.17.1.593
    [24]
    MUÑOZ-ALMAGRO N, VENDRELL-CALATAYUD M, MÉNDEZ-ALBIÑANA P, et al. Extraction optimization and structural characterization of pectin from persimmon fruit (Diospyros kaki Thunb. var. Rojo brillante)[J]. Carbohydrate Polymers,2021,272:118411. doi: 10.1016/j.carbpol.2021.118411
    [25]
    SONG C, HUANG F H, LIU L Y, et al. Characterization and prebiotic properties of pectin polysaccharide from Clausena lansium (Lour. ) Skeels fruit[J]. International Journal of Biological Macromolecules,2022,194:412−421. doi: 10.1016/j.ijbiomac.2021.11.083
    [26]
    REICHEMBACH L H. , DE OLIVEIRA PETKOWICZ C L. Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties[J]. Carbohydrate Polymers,2020,245:116473. doi: 10.1016/j.carbpol.2020.116473
    [27]
    LAI H L, YANG L C, LIN P T, et al. Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system[J]. International Journal of Biological Macromolecules,2020,155:951−960. doi: 10.1016/j.ijbiomac.2019.11.054
    [28]
    YIN M, ZHANG Y, LI H. Advances in research on immunoregulation of macrophages by plant polysaccharides[J]. Frontiers in Immunology,2019,10:145. doi: 10.3389/fimmu.2019.00145
    [29]
    SCIALÒ F, FERNÁNDEZ-AYALA D J, SANZ A. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease[J]. Frontiers in Physiology,2017,8:428. doi: 10.3389/fphys.2017.00428
    [30]
    SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of Cellular Physiology,2018,233(9):6425−6440. doi: 10.1002/jcp.26429
    [31]
    POPOV S V, OVODOVA R G, OVODOV Y S. Effect of lemnan, pectin from Lemna minor L. and its fragments on inflammatory reaction[J]. Phytotherapy Research,2006,20(5):403−407. doi: 10.1002/ptr.1869
    [32]
    HUANG L L, ZHAO J, WEI Y L, et al. Structural characterization and mechanisms of macrophage immunomodulatory activity of a pectic polysaccharide from Cucurbita moschata Duch[J]. Carbohydrate Polymers,2021,269:118288. doi: 10.1016/j.carbpol.2021.118288
    [33]
    ZHANG Q, XU Y, LV J J, et al. Structure characterization of two functional polysaccharides from Polygonum multiflorum and its immunomodulatory[J]. International Journal of Biological Macromolecules,2018,113:195−204. doi: 10.1016/j.ijbiomac.2018.02.064
    [34]
    SATOH T, AKIRA S. Toll-like receptor signaling and its inducible proteins[J]. Microbiology Spectrum, 2016, 4(6).
    [35]
    LI M Z, WEN J J, HUANG X J, et al. Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis[J]. Food Chemistry,2021,374:131586.
  • Cited by

    Periodical cited type(19)

    1. 安勤,鲍肃都,陈宏宇,安会敏,陈圆,张欣仪,刘洋,刘仲华,黄建安. 基于GC×GC-QTOF-MS分析不同品种汝城白毛茶白茶的香气特征. 食品科学. 2025(04): 163-171 .
    2. 刘学艳,杨文光,徐婷,罗正飞,王绍梅,龚正礼. 并堆工艺对云南白茶品质影响的研究. 中国茶叶. 2025(03): 25-33 .
    3. 熊梦钒,鲁倩,陈泽文,李利亭,任玲,董蕊,周红杰,李亚莉. HS-SPME-GC-MS技术结合ROAV分析五指山茶区三种红茶的关键香气物质. 现代食品科技. 2025(01): 251-261 .
    4. 马晨阳,高畅,田迪,周小慧,任玲,李沅达,李亚莉,周红杰. 不同季节云抗10号厌氧加工白茶的品质差异探究. 食品工业科技. 2024(03): 107-113 . 本站查看
    5. 孔亚帅,卫艺炜,万亚欣,王晶晶,姚慧敏,尹鹏,王子浩,郭桂义. 基于非靶向代谢组学技术的不同季节信阳白茶品质分析. 食品科技. 2024(05): 50-56 .
    6. 黄艳,张有东,孙威江. 白茶加工技术与装备应用现状. 中国茶叶. 2024(08): 14-22 .
    7. 武珊珊,杨雪梅,舒娜,郭雯飞,潘朦,张绪尖,苏建美,马占霞. 基于HS-SPME-GC-MS的云南白茶关键香气组分及特征分析. 食品研究与开发. 2024(16): 170-180 .
    8. 谢晨昕,赵锋,林雨,蔡良绥,林智,郭丽. 日晒茶风味化学特征研究进展. 茶叶科学. 2024(04): 554-564 .
    9. 叶秋萍,余雯,谢基雄,曾新萍,应梦云. 不同干燥方式对茉莉花茶挥发性成分的影响. 食品工业科技. 2024(18): 210-218 . 本站查看
    10. 李为兰,徐柠檬,杨晶晶,资璐熙,郭磊. 基于GC-IMS指纹图谱分析云南不同产地美味牛肝菌的挥发性成分. 中国食品学报. 2024(08): 341-356 .
    11. 刘金鑫,李晓洁,李建华,谈亚丽,杜维力,李啸. 高茶黄素速溶红茶的酶促氧化工艺优化及品质分析. 食品工业科技. 2023(05): 185-194 . 本站查看
    12. 李沅达,吴婷,黄刚骅,任玲,马晨阳,周小慧,李亚莉,周红杰. SPME-GC-MS技术结合rOAV分析不同加工工艺紫娟白茶的关键香气物质. 食品工业科技. 2023(09): 324-332 . 本站查看
    13. 武珊珊,尤名南,潘朦,王玮,郭巧,丁其欢,周雪芳. 白茶香气成分及影响因素研究进展. 食品安全质量检测学报. 2023(12): 1-14 .
    14. 翁唐宾. 白茶加工工艺关键技术分析. 福建茶叶. 2023(08): 29-31 .
    15. 张晓元,陈雄,蔡伟贤,吴晖. 草珊瑚茶加工工艺及质量评价. 现代食品科技. 2023(08): 199-205 .
    16. 周一鸣,蔡望秋,朱思怡,魏佳南,崔琳琳,周小理. 福建白茶的风味物质与特征香气分析研究进展. 农产品加工. 2023(19): 84-89+95 .
    17. 陈林,陈键,宋振硕,王丽丽,张应根,项丽慧,林清霞. 白茶风味品质形成与调控技术研究进展. 中国茶叶加工. 2023(04): 22-35 .
    18. 王金华,叶晓仪,母艳,马立志,钱勇,葛永辉. 贵州3种代表性猕猴桃种间特征香气成分比较分析. 食品安全质量检测学报. 2022(19): 6190-6197 .
    19. 张灵枝,戴浩民,黄艳,林振传,邵克平,孙威江. 福鼎白茶品质特征与质量评判研究进展. 海峡科学. 2022(11): 68-72+76 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (269) PDF downloads (23) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return