Citation: | JIANG Wenting, CHEN Xu, CAI Xixi, et al. Prediction of Interaction between Fish-derived Antifreeze Peptides and Fish Myosin by Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(20): 29−38. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010078. |
[1] |
高荣, 吴茜婷, 张贝叶, 等. 我国食用渔业资源发展现状及未来展望[J]. 江西水产科技,2018(4):55−56. [GAO R, WU X T, ZHANG B Y, et al. Present situation and future prospect of edible fishery resources in China[J]. Jiangxi Fishery Science and Technology,2018(4):55−56. doi: 10.3969/j.issn.1006-3188.2018.04.026
|
[2] |
裘乐芸, 邢倩, 邓泽元, 等. 植物多酚与鲢鱼肌球蛋白相互作用及其对肌原纤维蛋白结构和凝胶形成的影响[J]. 中国食品学报,2021,21(5):48−56. [QIU L Y, XING Q, DENG Z Y, et al. The interaction of plant polyphenols with silver carp myosin and its effects on the structure and gel formation of myofibrillar protein[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(5):48−56.
|
[3] |
蔡路昀, 许晴, 曹爱玲. 不同超声辅助解冻方式对海鲈鱼品质的影响[J]. 食品工业科技,2020,41(24):264−271. [CAI L Y, XU Q, CAO A L. Effects of different ultrasound-assisted thawing methods on the quality of the sea bass[J]. Science and Technology of Food Industry,2020,41(24):264−271.
|
[4] |
余璐涵, 陈旭, 吴金鸿, 等. 不同低温冻融循环对鱼糜品质与加工特性的影响[J]. 食品工业科技,2022,43(7):9. [YU L H, CHEN X, WU J H, et al. Effects of freezing and thawing cycles on quality and processing characteristics of surimi[J]. Science and Technology of Food Industry,2022,43(7):9. doi: 10.13386/j.issn1002-0306.2021080165
|
[5] |
ZHAO Y, CHEN Z G, WU T. Cryogelation of alginate improved the freeze-thaw stability of oil-in-water emulsions[J]. Carbohydrate Polymers,2018,198:26−33. doi: 10.1016/j.carbpol.2018.06.013
|
[6] |
AN Y Q, YOU J, XIONG S B, et al. Short-term frozen storage enhances cross-linking that was induced by transglutaminase in surimi gels from silver carp (Hypophthalmichthys molitrix)[J]. Food Chemistry,2018,257:216−222. doi: 10.1016/j.foodchem.2018.02.140
|
[7] |
MORENO H M, HERRANZ B, PEREZ-MATEOS M, et al. New alternatives in seafood restructured products[J]. Critical Reviews in Food Science and Nutrition,2016,56(2):237−248. doi: 10.1080/10408398.2012.719942
|
[8] |
高宇, 毕保良, 贾丹, 等. 青鱼和鲢鱼肌球蛋白热诱导凝胶特性的比较[J]. 食品工业科技,2021,42(3):1−5,12. [GAO Y, BI B L, JIA D, et al. Comparison of the properties of heat-induced gel of black carp and silver carp myosin[J]. Science and Technology of Food Industry,2021,42(3):1−5,12.
|
[9] |
梁雯雯, 郭建, 汪秋宽, 等. 不同解冻方式对鲢鱼肌球蛋白结构和性质的影响[J]. 食品工业科技,2019,40(21):7−12. [LIANG W W, GUO J, WANG Q K, et al. Effects of different thawing methods on the structure and properties of silver carp myosin[J]. Science and Technology of Food Industry,2019,40(21):7−12.
|
[10] |
SIEGEL D G, SCHMIDT G R. Ionic, pH, and temperature effects on the binding ability of myosin[J]. Journal of Food Science,1979,44(6):1686−1689. doi: 10.1111/j.1365-2621.1979.tb09116.x
|
[11] |
陈旭, 蔡茜茜, 汪少芸, 等. 抗冻肽的研究进展及其在食品工业的应用前景[J]. 食品科学,2019,40(17):331−337. [CHEN X, CAI X X, WANG S Y, et al. Recent progress and application prospects of antifreeze peptides in food industry[J]. Food Science,2019,40(17):331−337. doi: 10.7506/spkx1002-6630-20190303-025
|
[12] |
KUN H, MASTAI Y. Activity of short segments of type I antifreeze protein[J]. Biopolymers,2007,88(6):807−814. doi: 10.1002/bip.20844
|
[13] |
NOBEKAWA T, HAGIWARA Y. Interaction among the twelve-residue segment of antifreeze protein type I, or its mutants, water and a hexagonal ice crystal[J]. Molecular Simulation,2008,34(6):591−610. doi: 10.1080/08927020801986556
|
[14] |
CHEN X, WU J H, LI L, et al. Cryoprotective activity and action mechanism of antifreeze peptides obtained from tilapia scales on Streptococcus thermophilus during cold stress[J]. Journal of Agricultural and Food Chemistry,2019,67(7):1918−1926. doi: 10.1021/acs.jafc.8b06514
|
[15] |
KIM H J, LEE J H, HUR Y B, et al. Marine antifreeze proteins: Structure, function, and application to cryopreservation as a potential cryoprotectant[J]. Marine Drugs,2017,15(2):27. doi: 10.3390/md15020027
|
[16] |
DU L H, BETTI M. Identification and evaluation of cryoprotective peptides from chicken collagen: Ice-growth inhibition activity compared to that of type I antifreeze proteins in sucrose model systems[J]. Journal of Agricultural and Food Chemistry,2016,64(25):5232−5240. doi: 10.1021/acs.jafc.6b01911
|
[17] |
CLARKE C J, BUCKLEY S L, LINDNER N. Ice structuring proteins-a new name for antifreeze proteins[J]. CryoLetters,2002,23(2):89−92.
|
[18] |
金泉, 张莉, 吴金鸿, 等. 丝胶抗冻肽在大肠杆菌中的重组表达及其抗冻活性初探[J]. 食品工业科技,2018,39(21):141−145,206. [JIN Q, ZHANG L, WU J H, et al. Recombinant expression of sericin antifreeze peptide in E. coli and its antifreeze activity[J]. Science and Technology of Food Industry,2018,39(21):141−145,206.
|
[19] |
CHEN X, WU J H, LI X Z, et al. Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides[J]. Food Chemistry,2022,371:131054. doi: 10.1016/j.foodchem.2021.131054
|
[20] |
李晓坤. 利用猪皮明胶制备抗冻多肽及其低温保护作用研究[D]. 福州: 福州大学, 2013.
LI X K. Preparation of antifreeze polypeptide from pigskin gelatin and study on the cryoprotective activity[D]. Fuzhou: Fuzhou University, 2013.
|
[21] |
WU J H, RONG Y Z, WANG Z W, et al. Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction[J]. Food Chemistry,2015,174:621−629. doi: 10.1016/j.foodchem.2014.11.100
|
[22] |
孙晨松, 陈雯祺, 陈盈盈, 等. 基于分子对接虚拟筛选含酪氨酸残基的ACE抑制三肽[J]. 食品工业科技,2021,42(16):20−27. [SUN C S, CHEN W Q, CHEN Y Y, et al. Virtual screening of ACE inhibitory tripeptides containing tyrosine residues based on molecular docking[J]. Science and Technology of Food Industry,2021,42(16):20−27.
|
[23] |
LASKOWSKI R A, MACARTHUR M W, MOSS D S, et al. Procheck: A program to check the stereochemical quality of protein structures[J]. J Appl Crystallogr, 1993, 26(Pt 2): 283−291.
|
[24] |
权丽君. 蛋白质构效关系的计算方法研究[D]. 苏州: 苏州大学, 2017.
QUAN L J. Study on applying computing techniques to protein structure-activity relationship[D]. Suzhou: Soochow University, 2017.
|
[25] |
卫莺. 有机锡抗癌化合物与CYP3A4代谢酶的相互作用[D]. 太原: 山西医科大学, 2017.
WEI Y. Investigation on the interaction between organotin antitumor compounds with human cytochrome P450 3A4 protease[D]. Taiyuan: Shanxi Medical University, 2017.
|
[26] |
GRAHAM L A, DAVIES P L. Glycine-rich antifreeze proteins from snow fleas[J]. Science,2005,310(5747):461. doi: 10.1126/science.1115145
|
[27] |
CAO H, ZHAO Y, ZHU Y B, et al. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin[J]. Food Chemistry,2016,194:1245−1253. doi: 10.1016/j.foodchem.2015.08.102
|
[28] |
WANG S Y, ZHAO J, CHEN L, et al. Preparation, isolation and hypothermia protection activity of antifreeze peptides from shark skin collagen[J]. LWT-Food Science and Technology,2014,55(1):210−217. doi: 10.1016/j.lwt.2013.07.019
|
[29] |
NIKOO M, BENJAKUL S, EHSANI A, et al. Antioxidant and cryoprotective effects of a tetrapeptide isolated from amur sturgeon skin gelatin[J]. Journal of Functional Foods,2014,7:609−620. doi: 10.1016/j.jff.2013.12.024
|
[30] |
DAMODARAN S, WANG S Y. Ice crystal growth inhibition by peptides from fish gelatin hydrolysate[J]. Food Hydrocolloids,2017,70:46−56. doi: 10.1016/j.foodhyd.2017.03.029
|
[31] |
CHEN X, WU J H, CAI X X, et al. Production, structure-function relationships, mechanisms, and applications of antifreeze peptides[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):542−562. doi: 10.1111/1541-4337.12655
|
[32] |
GRIFFITH M, EWART K V. Antifreeze proteins and their potential use in frozen foods[J]. Biotechnology Advances,1995,13(3):375−402. doi: 10.1016/0734-9750(95)02001-J
|
[33] |
DAVIES P L, JASON B, KUIPER M J, et al. Structure and function of antifreeze proteins[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences,2002,357(1423):1781−1782.
|
[34] |
BAARDSNES J, KUIPER M J, DAVIES P L. Antifreeze protein dimer: When two ice-binding faces are better than one[J]. The Journal of Biological Chemistry,2003,278(40):38942−38947. doi: 10.1074/jbc.M306776200
|
[35] |
DALEY M E, SPYRACOPOULOS L, JIA Z, et al. Structure and dynamics of a β-helical antifreeze protein[J]. Biochemistry,2002,41(17):5515−5525. doi: 10.1021/bi0121252
|
[36] |
MONHEMI H, HOUSAINDOKHT M R, POUR A N. Effects of natural osmolytes on the protein structure in supercritical CO2: Molecular level evidence[J]. The Journal of Physical Chemistry B,2015,119(33):10406−10416. doi: 10.1021/acs.jpcb.5b03970
|
[37] |
CAMPBELL J D, BIGGIN P C, MARC B, et al. Extending the structure of an abc transporter to atomic resolution: Modeling and simulation studies of msba[J]. Biochemistry,2003,42(13):3666−3673. doi: 10.1021/bi027337t
|
[38] |
CERUSO M A, AMADEI A, DI N A. Mechanics and dynamics of b1 domain of protein g: Role of packing and surface hydrophobic residues[J]. Protein Science:A Publication of the Protein Society,1999,8(1):147−160.
|