WANG Zhenwei, CHEN Xiliang, HU Xiaobing, et al. Fluorescence Detection Characteristic of Heavy-metal Chromium Ions in Water by Photoluminescent Tungsten-oxide Cluster Material[J]. Science and Technology of Food Industry, 2022, 43(22): 303−309. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120324.
Citation: WANG Zhenwei, CHEN Xiliang, HU Xiaobing, et al. Fluorescence Detection Characteristic of Heavy-metal Chromium Ions in Water by Photoluminescent Tungsten-oxide Cluster Material[J]. Science and Technology of Food Industry, 2022, 43(22): 303−309. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120324.

Fluorescence Detection Characteristic of Heavy-metal Chromium Ions in Water by Photoluminescent Tungsten-oxide Cluster Material

More Information
  • Received Date: December 29, 2021
  • Available Online: September 05, 2022
  • In this work, using Eu3+ embedded tungsten-oxygen cluster (compound 1) as the fluorescent probe material, the rapid and sensitive fluorescence detection of heavy metal Cr3+ ions in aqueous solution by compound 1 has been systematically studied. The selectivity, anti-interference ability and detection limit of compound 1 for fluorescence detection of Cr3+ ions in water were characterized and analyzed by steady-state transient fluorescence spectrometer. The results showed that compound 1 exhibited a rapid and sensitive fluorescence quenching response to heavy metal Cr3+ ions with strong anti-interference ability. The calculated value of quenching constant (1.41×108 L·mol−1·s−1) was far lower than the maximum scattering collision quenching constant (2.00×1010 L·mol−1·s−1), which showed that compound 1 exhibited a rapid and sensitive fluorescence quenching response to heavy metal Cr3+ ions. Fluorescence detection results of compound 1 in the aqueous solution containing different cations and anions showed that compound 1 had strong anti-interference ability for fluorescence detection of Cr3+ ions in aqueous solution. The calculated results indicated that detection limit of compound 1 for Cr3+ ions in aqueous solution was 4.21×10−7 mol/L, which showed that compound 1 had a good detection effect on Cr3+ ions in water environment. This study was supposed to provide a sensitive and reliable method for the fluorescence detection of heavy metal Cr3+ ions in water.
  • [1]
    池丽娜. 水环境中重金属污染的现状及检测技术探讨[J]. 世界有色金属,2020,19:197−198. [CHI L N. Present situation of heavy metal pollution in water environment and discussion on detection technology[J]. World Nonferrous Metals,2020,19:197−198. doi: 10.3969/j.issn.1002-5065.2020.15.095
    [2]
    李仙清, 肖忠良, 梁海琴, 等. 汞离子化学传感检测的研究与应用[J]. 化学传感器,2016,36(2):1−10. [LI X Q, XIAO Z L, LIANG H Q, et al. Research and application of the mercury ion sensing detection[J]. Chemical Sensors,2016,36(2):1−10. doi: 10.3969/j.issn.1008-2298.2016.02.001
    [3]
    彭文韬. 含铬废水中化学需氧量测定方法探讨[J]. 皮革制作与环保科技,2021,2(14):8−9. [PENG W T. Determination of chemical oxygen demand in chromium containing wastewater[J]. Leather Manufacture and Environmental Technology,2021,2(14):8−9.
    [4]
    王彦, 耿盈, 周宇红, 等. 铬中毒人体脏器损伤探讨[J]. 中国卫生标准管理,2014,5(6):52−53. [WANG Y, GENG Y, ZHOU Y H, et al. Discussion on human viscera injury caused by chromium poisoning[J]. China Health Standard Management,2014,5(6):52−53.
    [5]
    刘倩, 刘美芹. 饮用水中Cr6+含量快速检测方法研究[J]. 质量安全与检验检测, 2021, 31(3): 61‒62, 88

    LIU Q, LIU M Q. Research on rapid detection methods of Cr6+ content in drinking water[J]. Quality Safety Inspection and Testing, 2021, 31(3): 61‒62, 88.
    [6]
    王亚楠, 王晓斐, 牛琳琳, 等. 食品中镉离子胶体金免疫层析快速检测方法的建立及应用[J]. 食品科学,2016,37(18):152−158. [WANG Y N, WANG X F, NIU L L, et al. Establishment and preliminary application of colloidal gold immunochromatography for detecting heavy metal cadmium ion in foods[J]. Food Science,2016,37(18):152−158. doi: 10.7506/spkx1002-6630-201618025
    [7]
    张家豪, 韦新东, 孟庆玲. 水中铬离子检测方法的进展[J]. 中国资源综合利用,2018,36(1):96−97,100. [ZHANG J H, WEI X D, MENG Q L. Progress of chromium ion detection in water[J]. China Resources Comprehensive Utilization,2018,36(1):96−97,100. doi: 10.3969/j.issn.1008-9500.2018.01.035
    [8]
    刘园园, 郭芸, 罗晓刚, 等. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展,2021,33(2):199−215. [LIU Y Y, GUO Y, LUO X G, et al. Detection of metal ions, small molecules and large molecules by near-infrared fluorescent probes[J]. Progress in Chemistry,2021,33(2):199−215. doi: 10.7536/PC200765
    [9]
    纪雪峰, 单斌, 王莎莎, 等. 荧光探针在水中重金属离子检测中的应用研究进展[J]. 青岛理工大学学报,2021,42(1):109−118. [JI X F, SHAN B, WANG S S, et al. Application research progress of fluorescent probe in the detection of heavy metal ions in water[J]. Journal of Qingdao Technological University,2021,42(1):109−118. doi: 10.3969/j.issn.1673-4602.2021.01.018
    [10]
    FIRDAUS F, FARHI A, FARAZ M, et al. Benzidine based fluorescent probe for the sensitive detection of heavy metal ions via chelation enhanced fluorescence mechanism-a multiplexed sensing platform[J]. Journal of Luminescence,2018,199:475−482. doi: 10.1016/j.jlumin.2018.03.083
    [11]
    GAO P, PAN W, LI N, et al. Fluorescent probes for organelle-targeted bioactive species imaging[J]. Chemical Science,2019,10:6035−6071. doi: 10.1039/C9SC01652J
    [12]
    GRYNKIEWICZ G, POENIE M, TSIEN R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties[J]. Journal of Biological Chemistry,1985,260(6):3440−3450. doi: 10.1016/S0021-9258(19)83641-4
    [13]
    RAHBAR N, ABBASZADEGAN P, SAVARIZADEH A. A sensitive fluorescent sensing strategy for nanomolar levels of metformin using graphitic carbon nitride nanosheets as nanofluoroprobe[J]. Analytica Chimica Acta,2018,1026(5):117−124.
    [14]
    WANG D, LIU L L, JIANG J. Polyoxometalate-based composite materials in electrochemistry: State-of-the-art progress and future outlook[J]. Nanoscale, 2020, 12: 5705‒5718.
    [15]
    ANYUSHIN A V, KONDINSKI A, PARAC-VOGT T N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications[J]. Chemical Society Reviews,2020,49:382−432. doi: 10.1039/C8CS00854J
    [16]
    高丽华, 张金凤, 孙庆玲, 等. 双偶极半菁染料/多金属氧酸盐自组装膜的制备及其光电转换性质[J]. 化学学报,2012,70(4):441−444. [GAO L H, ZHANG J F, SUN Q L, et al. Preparation and photoelectric conversion of dipolar hemicyanine dye/polyoxometalate self-assembled films[J]. Acta Chimica Sinica,2012,70(4):441−444. doi: 10.6023/A1106183
    [17]
    LI X X, ZHAO D, ZHENG S T. Recent advances in POM-organic frameworks and POM-organic polyhedra[J]. Coordination Chemistry Reviews,2019,397:220−240. doi: 10.1016/j.ccr.2019.07.005
    [18]
    STUCKART M, MONAKHOV K Y. Polyoxometalates as components of supramolecular assemblies[J]. Chemical Science,2019,10:4364−4376. doi: 10.1039/C9SC00979E
    [19]
    李海楼. 稀土取代的新型多钨氧酸盐的合成、结构及性质研究[D]. 开封: 河南大学, 2016

    LI H L. Syntheses, structures and properties of novel rare-earth substituted polyoxotungstates[D]. Zhengzhou: Henan University, 2016.
    [20]
    WEI H, ZHANG J, SHI N, et al. A recyclable polyoxometalate-based supramolecular chemosensor for efficient detection of carbon dioxide[J]. Chemical Science,2015,6(12):7201−7205. doi: 10.1039/C5SC02020D
    [21]
    GUO Y X, GONG Y J, QI L B, et al. A polyoxometalate-based supramolecular chemosensor for rapid detection of hydrogen sulfide with dual signals[J]. Journal of Colloid and Interface Science,2017,485:280−287. doi: 10.1016/j.jcis.2016.09.047
    [22]
    LU J, KANG Q, XIAO J, et al. Luminescent, stabilized and environmentally friendly [EuW10O36]9−-chitosan films for sensitive detection of hydrogen peroxide[J]. Carbohydrate Polymers,2018,200:560−566. doi: 10.1016/j.carbpol.2018.08.038
    [23]
    XIA C X, ZHANG S S, SUN D S, et al. Coassembly of mixed weakley-type polyoxometalates to novel nanoflowers with tunable fluorescence for the detection of toluene[J]. Langmuir,2018,34(22):6367−6375. doi: 10.1021/acs.langmuir.8b00283
    [24]
    JU W, SONG X L, YAN G, et al. Layer-by-layer assembly of polyoxometalate-pyrene-decorated fluorescent microspheres for the suspension immunoassay of Listeria monocytogenes[J]. Journal of Materials Chemistry B,2016,4(24):4287−4294. doi: 10.1039/C6TB00986G
    [25]
    SALOMON W, DOLBECQ A, ROCH-MARCHAL C, et al. A multifunctional dual-luminescent polyoxometalate@metal-organic framework EuW10@UiO-67 composite as chemical probe and temperature sensor[J]. Frontiers in Chemistry,2018,6:425. doi: 10.3389/fchem.2018.00425
    [26]
    XIA C X, ZHANG S S, TAN Y B, et al. Self-assembly of europium-containing polyoxometalates/tetra-n-alkyl ammonium with enhanced emission for Cu2+ detection[J]. ACS Omega,2018,3(11):14953−14961. doi: 10.1021/acsomega.8b01636
    [27]
    LEI N, SHEN D Z, CHEN X. Highly luminescent and multi-sensing aggregates co-assembled from Eu-containing polyoxometalate and an enzyme-responsive surfactant in water[J]. Soft Matter,2019,15:399−407. doi: 10.1039/C8SM02276C
    [28]
    HORN M R, SINGH A, ALOMARI S, et al. Polyoxometalates (POMs): From electroactive clusters to energy materials[J]. Energy & Environmental Science,2021,14:1652−1700.
    [29]
    SUN Z Q, HUANG H Y, ZHANG R, et al. Activatable rare earth near-infrared-II fluorescence ratiometric nanoprobes[J]. NANO Letter,2021,21(15):6576−6583. doi: 10.1021/acs.nanolett.1c01962
    [30]
    WU H C, CHEN H H, FU M H, et al. A PHBA-functionalized organic-inorganic hybrid polyoxometalate as a luminescent probe for selectively sensing chromium and calcium in aqueous solution[J]. Dyes and Pigments,2019,171:107696. doi: 10.1016/j.dyepig.2019.107696
    [31]
    ZHANG Y, WANG D, ZENG B X, et al. An unprecedented polyhydroxycarboxylic acid ligand bridged multi-EuIII incorporated tellurotungstate and its luminescence properties[J]. Dalton Transactions,2020,49:8933−8948. doi: 10.1039/D0DT00729C
    [32]
    WANG D, LI Y M, ZHANG Y, et al. Construction of Ln3+-substituted arsenotungstates modified by 2, 5-thiophenedicarboxylic acid and application in selective fluorescence detection of Ba2+ in aqueous solution[J]. Inorganic Chemistry,2020,59:6839−6848. doi: 10.1021/acs.inorgchem.0c00223
    [33]
    MARCELO H G. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2020,42:100338. doi: 10.1016/j.jphotochemrev.2019.100338
  • Cited by

    Periodical cited type(13)

    1. 王洪江,赵品贞,姬庆,张建忠,王兴伟,夏书芹,张晓鸣. 影响蚝油气味品质的关键风味化合物的研究. 食品与发酵工业. 2025(07): 309-315 .
    2. 张丽华,王子阳,王文博,范雯,白杨,纵伟. 顶空固相微萃取-气相色谱-质谱联用结合气味活度值法分析不同脱腥方法对鸡爪挥发性风味物质的影响. 肉类研究. 2025(04): 17-23 .
    3. 黄磊,孙纪录,张彩璇,张海恩,郭明珠. 淡水鱼腥味物质检测及脱腥技术研究进展. 食品研究与开发. 2024(04): 209-216 .
    4. 付靖雯,陈昌威,沈祥皓,杨柳莺,王则程,杨金玉,盘赛昆. 响应面法优化紫贻贝脱腥及预处理加工工艺. 中国调味品. 2024(06): 15-21 .
    5. 王志龙,王禹,段静瑶,苏岩峰,喻佩. 海参制品腥味化合物形成与脱腥技术研究进展. 中国调味品. 2024(06): 206-212 .
    6. 冯瑞,梁结桦,田柬昕,赵影,张宇,黄达荣,杜冰,钟碧銮. 基于电子鼻和顶空固相微萃取-气相色谱-质谱技术分析不同品种鱼胶的风味差异. 食品科技. 2024(05): 289-298 .
    7. 洪林欣,童星,孙乐常,吴昌正,尹开平,刘康,林端权,张凌晶. 酶解前后牡蛎肉风味变化研究. 食品与发酵工业. 2024(20): 120-128 .
    8. 李放,邓林艳,张婉婷,徐文思,杨祺福,王伯华,杨品红. 淡水虾腥味脱除技术研究进展. 农产品加工. 2023(03): 89-92 .
    9. 石林凡,李周茹,任中阳,刘光明,翁武银. 贝类腥味物质及形成机理研究进展. 中国食品学报. 2023(03): 406-415 .
    10. 陈雅纯,王利文,马爱进,桑亚新,孙纪录. 市售低值贝类加工食品中原肌球蛋白致敏性评估及其消减技术. 食品科学. 2023(07): 169-175 .
    11. 夏强,黄思强,梁倚绮,徐乐,周昌瑜,党亚丽,曹锦轩,涂茂林,孙杨赢,潘道东. 畜禽类肝脏腥味物质与脱腥技术研究进展. 肉类研究. 2023(07): 28-34 .
    12. 刘泽祺,李明霞,杨琳,郑华,林捷,吴绍宗,郭宗林,雷红涛. 畜禽副产物腥味形成机制及脱腥方法研究进展. 食品安全质量检测学报. 2023(16): 86-93 .
    13. 张美琪,代文洁,吴禹琪,郑佳,李松,秦茂林,张淑华,吴同. 酒糟基磁性活性碳制备及其亚甲基蓝吸附机能分析. 宜宾学院学报. 2022(12): 105-109 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (152) PDF downloads (10) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return