WANG Zhenwei, CHEN Xiliang, HU Xiaobing, et al. Fluorescence Detection Characteristic of Heavy-metal Chromium Ions in Water by Photoluminescent Tungsten-oxide Cluster Material[J]. Science and Technology of Food Industry, 2022, 43(22): 303−309. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120324.
Citation: WANG Zhenwei, CHEN Xiliang, HU Xiaobing, et al. Fluorescence Detection Characteristic of Heavy-metal Chromium Ions in Water by Photoluminescent Tungsten-oxide Cluster Material[J]. Science and Technology of Food Industry, 2022, 43(22): 303−309. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120324.

Fluorescence Detection Characteristic of Heavy-metal Chromium Ions in Water by Photoluminescent Tungsten-oxide Cluster Material

More Information
  • Received Date: December 29, 2021
  • Available Online: September 05, 2022
  • In this work, using Eu3+ embedded tungsten-oxygen cluster (compound 1) as the fluorescent probe material, the rapid and sensitive fluorescence detection of heavy metal Cr3+ ions in aqueous solution by compound 1 has been systematically studied. The selectivity, anti-interference ability and detection limit of compound 1 for fluorescence detection of Cr3+ ions in water were characterized and analyzed by steady-state transient fluorescence spectrometer. The results showed that compound 1 exhibited a rapid and sensitive fluorescence quenching response to heavy metal Cr3+ ions with strong anti-interference ability. The calculated value of quenching constant (1.41×108 L·mol−1·s−1) was far lower than the maximum scattering collision quenching constant (2.00×1010 L·mol−1·s−1), which showed that compound 1 exhibited a rapid and sensitive fluorescence quenching response to heavy metal Cr3+ ions. Fluorescence detection results of compound 1 in the aqueous solution containing different cations and anions showed that compound 1 had strong anti-interference ability for fluorescence detection of Cr3+ ions in aqueous solution. The calculated results indicated that detection limit of compound 1 for Cr3+ ions in aqueous solution was 4.21×10−7 mol/L, which showed that compound 1 had a good detection effect on Cr3+ ions in water environment. This study was supposed to provide a sensitive and reliable method for the fluorescence detection of heavy metal Cr3+ ions in water.
  • [1]
    池丽娜. 水环境中重金属污染的现状及检测技术探讨[J]. 世界有色金属,2020,19:197−198. [CHI L N. Present situation of heavy metal pollution in water environment and discussion on detection technology[J]. World Nonferrous Metals,2020,19:197−198. doi: 10.3969/j.issn.1002-5065.2020.15.095
    [2]
    李仙清, 肖忠良, 梁海琴, 等. 汞离子化学传感检测的研究与应用[J]. 化学传感器,2016,36(2):1−10. [LI X Q, XIAO Z L, LIANG H Q, et al. Research and application of the mercury ion sensing detection[J]. Chemical Sensors,2016,36(2):1−10. doi: 10.3969/j.issn.1008-2298.2016.02.001
    [3]
    彭文韬. 含铬废水中化学需氧量测定方法探讨[J]. 皮革制作与环保科技,2021,2(14):8−9. [PENG W T. Determination of chemical oxygen demand in chromium containing wastewater[J]. Leather Manufacture and Environmental Technology,2021,2(14):8−9.
    [4]
    王彦, 耿盈, 周宇红, 等. 铬中毒人体脏器损伤探讨[J]. 中国卫生标准管理,2014,5(6):52−53. [WANG Y, GENG Y, ZHOU Y H, et al. Discussion on human viscera injury caused by chromium poisoning[J]. China Health Standard Management,2014,5(6):52−53.
    [5]
    刘倩, 刘美芹. 饮用水中Cr6+含量快速检测方法研究[J]. 质量安全与检验检测, 2021, 31(3): 61‒62, 88

    LIU Q, LIU M Q. Research on rapid detection methods of Cr6+ content in drinking water[J]. Quality Safety Inspection and Testing, 2021, 31(3): 61‒62, 88.
    [6]
    王亚楠, 王晓斐, 牛琳琳, 等. 食品中镉离子胶体金免疫层析快速检测方法的建立及应用[J]. 食品科学,2016,37(18):152−158. [WANG Y N, WANG X F, NIU L L, et al. Establishment and preliminary application of colloidal gold immunochromatography for detecting heavy metal cadmium ion in foods[J]. Food Science,2016,37(18):152−158. doi: 10.7506/spkx1002-6630-201618025
    [7]
    张家豪, 韦新东, 孟庆玲. 水中铬离子检测方法的进展[J]. 中国资源综合利用,2018,36(1):96−97,100. [ZHANG J H, WEI X D, MENG Q L. Progress of chromium ion detection in water[J]. China Resources Comprehensive Utilization,2018,36(1):96−97,100. doi: 10.3969/j.issn.1008-9500.2018.01.035
    [8]
    刘园园, 郭芸, 罗晓刚, 等. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展,2021,33(2):199−215. [LIU Y Y, GUO Y, LUO X G, et al. Detection of metal ions, small molecules and large molecules by near-infrared fluorescent probes[J]. Progress in Chemistry,2021,33(2):199−215. doi: 10.7536/PC200765
    [9]
    纪雪峰, 单斌, 王莎莎, 等. 荧光探针在水中重金属离子检测中的应用研究进展[J]. 青岛理工大学学报,2021,42(1):109−118. [JI X F, SHAN B, WANG S S, et al. Application research progress of fluorescent probe in the detection of heavy metal ions in water[J]. Journal of Qingdao Technological University,2021,42(1):109−118. doi: 10.3969/j.issn.1673-4602.2021.01.018
    [10]
    FIRDAUS F, FARHI A, FARAZ M, et al. Benzidine based fluorescent probe for the sensitive detection of heavy metal ions via chelation enhanced fluorescence mechanism-a multiplexed sensing platform[J]. Journal of Luminescence,2018,199:475−482. doi: 10.1016/j.jlumin.2018.03.083
    [11]
    GAO P, PAN W, LI N, et al. Fluorescent probes for organelle-targeted bioactive species imaging[J]. Chemical Science,2019,10:6035−6071. doi: 10.1039/C9SC01652J
    [12]
    GRYNKIEWICZ G, POENIE M, TSIEN R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties[J]. Journal of Biological Chemistry,1985,260(6):3440−3450. doi: 10.1016/S0021-9258(19)83641-4
    [13]
    RAHBAR N, ABBASZADEGAN P, SAVARIZADEH A. A sensitive fluorescent sensing strategy for nanomolar levels of metformin using graphitic carbon nitride nanosheets as nanofluoroprobe[J]. Analytica Chimica Acta,2018,1026(5):117−124.
    [14]
    WANG D, LIU L L, JIANG J. Polyoxometalate-based composite materials in electrochemistry: State-of-the-art progress and future outlook[J]. Nanoscale, 2020, 12: 5705‒5718.
    [15]
    ANYUSHIN A V, KONDINSKI A, PARAC-VOGT T N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications[J]. Chemical Society Reviews,2020,49:382−432. doi: 10.1039/C8CS00854J
    [16]
    高丽华, 张金凤, 孙庆玲, 等. 双偶极半菁染料/多金属氧酸盐自组装膜的制备及其光电转换性质[J]. 化学学报,2012,70(4):441−444. [GAO L H, ZHANG J F, SUN Q L, et al. Preparation and photoelectric conversion of dipolar hemicyanine dye/polyoxometalate self-assembled films[J]. Acta Chimica Sinica,2012,70(4):441−444. doi: 10.6023/A1106183
    [17]
    LI X X, ZHAO D, ZHENG S T. Recent advances in POM-organic frameworks and POM-organic polyhedra[J]. Coordination Chemistry Reviews,2019,397:220−240. doi: 10.1016/j.ccr.2019.07.005
    [18]
    STUCKART M, MONAKHOV K Y. Polyoxometalates as components of supramolecular assemblies[J]. Chemical Science,2019,10:4364−4376. doi: 10.1039/C9SC00979E
    [19]
    李海楼. 稀土取代的新型多钨氧酸盐的合成、结构及性质研究[D]. 开封: 河南大学, 2016

    LI H L. Syntheses, structures and properties of novel rare-earth substituted polyoxotungstates[D]. Zhengzhou: Henan University, 2016.
    [20]
    WEI H, ZHANG J, SHI N, et al. A recyclable polyoxometalate-based supramolecular chemosensor for efficient detection of carbon dioxide[J]. Chemical Science,2015,6(12):7201−7205. doi: 10.1039/C5SC02020D
    [21]
    GUO Y X, GONG Y J, QI L B, et al. A polyoxometalate-based supramolecular chemosensor for rapid detection of hydrogen sulfide with dual signals[J]. Journal of Colloid and Interface Science,2017,485:280−287. doi: 10.1016/j.jcis.2016.09.047
    [22]
    LU J, KANG Q, XIAO J, et al. Luminescent, stabilized and environmentally friendly [EuW10O36]9−-chitosan films for sensitive detection of hydrogen peroxide[J]. Carbohydrate Polymers,2018,200:560−566. doi: 10.1016/j.carbpol.2018.08.038
    [23]
    XIA C X, ZHANG S S, SUN D S, et al. Coassembly of mixed weakley-type polyoxometalates to novel nanoflowers with tunable fluorescence for the detection of toluene[J]. Langmuir,2018,34(22):6367−6375. doi: 10.1021/acs.langmuir.8b00283
    [24]
    JU W, SONG X L, YAN G, et al. Layer-by-layer assembly of polyoxometalate-pyrene-decorated fluorescent microspheres for the suspension immunoassay of Listeria monocytogenes[J]. Journal of Materials Chemistry B,2016,4(24):4287−4294. doi: 10.1039/C6TB00986G
    [25]
    SALOMON W, DOLBECQ A, ROCH-MARCHAL C, et al. A multifunctional dual-luminescent polyoxometalate@metal-organic framework EuW10@UiO-67 composite as chemical probe and temperature sensor[J]. Frontiers in Chemistry,2018,6:425. doi: 10.3389/fchem.2018.00425
    [26]
    XIA C X, ZHANG S S, TAN Y B, et al. Self-assembly of europium-containing polyoxometalates/tetra-n-alkyl ammonium with enhanced emission for Cu2+ detection[J]. ACS Omega,2018,3(11):14953−14961. doi: 10.1021/acsomega.8b01636
    [27]
    LEI N, SHEN D Z, CHEN X. Highly luminescent and multi-sensing aggregates co-assembled from Eu-containing polyoxometalate and an enzyme-responsive surfactant in water[J]. Soft Matter,2019,15:399−407. doi: 10.1039/C8SM02276C
    [28]
    HORN M R, SINGH A, ALOMARI S, et al. Polyoxometalates (POMs): From electroactive clusters to energy materials[J]. Energy & Environmental Science,2021,14:1652−1700.
    [29]
    SUN Z Q, HUANG H Y, ZHANG R, et al. Activatable rare earth near-infrared-II fluorescence ratiometric nanoprobes[J]. NANO Letter,2021,21(15):6576−6583. doi: 10.1021/acs.nanolett.1c01962
    [30]
    WU H C, CHEN H H, FU M H, et al. A PHBA-functionalized organic-inorganic hybrid polyoxometalate as a luminescent probe for selectively sensing chromium and calcium in aqueous solution[J]. Dyes and Pigments,2019,171:107696. doi: 10.1016/j.dyepig.2019.107696
    [31]
    ZHANG Y, WANG D, ZENG B X, et al. An unprecedented polyhydroxycarboxylic acid ligand bridged multi-EuIII incorporated tellurotungstate and its luminescence properties[J]. Dalton Transactions,2020,49:8933−8948. doi: 10.1039/D0DT00729C
    [32]
    WANG D, LI Y M, ZHANG Y, et al. Construction of Ln3+-substituted arsenotungstates modified by 2, 5-thiophenedicarboxylic acid and application in selective fluorescence detection of Ba2+ in aqueous solution[J]. Inorganic Chemistry,2020,59:6839−6848. doi: 10.1021/acs.inorgchem.0c00223
    [33]
    MARCELO H G. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2020,42:100338. doi: 10.1016/j.jphotochemrev.2019.100338
  • Cited by

    Periodical cited type(3)

    1. 王露,蔡雷,刘奇华,崔春. 花椒籽粕蛋白质的酶提工艺研究. 中国调味品. 2025(01): 206-209 .
    2. 陶静,翁霞,王喜珠. 甘谷伏椒挥发油成分及抗氧化活性研究. 中国调味品. 2024(04): 79-84 .
    3. 李宁,梁世岳,刘正群,张敏,郑梓,王雪梅,闫峻,穆淑琴. 花椒籽对蛋鸡生产性能、血清指标及蛋品质的影响. 饲料研究. 2024(18): 35-39 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (149) PDF downloads (10) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return