Citation: | LIU Xiaofei, LI Xiang, LIAN Jie, et al. Research Progress on Preparation and Application of Starch Nanoparticles[J]. Science and Technology of Food Industry, 2022, 43(21): 480−486. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120323. |
[1] |
NASROLLAHZADEH M, SAJJADI M, IRAVANI S, et al. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review[J]. Carbohydrate Polymers,2021,251:116986. doi: 10.1016/j.carbpol.2020.116986
|
[2] |
CHAVAN P, SINHMAR A, NEHRA M, et al. Impact on various properties of native starch after synthesis of starch nanoparticles: A review[J]. Food Chemistry,2021,364(15):130416.
|
[3] |
CAMPELO P H, SANTANA A S, CLERICI M. Starch nanoparticles: Production methods, structure, and properties for food applications[J]. Current Opinion in Food Science,2020,33:136−140. doi: 10.1016/j.cofs.2020.04.007
|
[4] |
ZHONG Y Y, QU J Z, LI Z H, et al. Rice starch multi-level structure and functional relationships[J]. Carbohydrate Polymers,2022,275:118777. doi: 10.1016/j.carbpol.2021.118777
|
[5] |
LUZI F, FORTUNATI E, MICHELE A D, et al. Nanostructured starch combined with hydroxytyrosol in poly (vinyl alcohol) based ternary films as active packaging system[J]. Carbohydrate Polymers,2018,193:239−248. doi: 10.1016/j.carbpol.2018.03.079
|
[6] |
LI H, GILBERT R G. Starch molecular structure: The basis for an improved understanding of cooked rice texture[J]. Carbohydrate Polymers,2018,195:9−17. doi: 10.1016/j.carbpol.2018.04.065
|
[7] |
PELISSARI F M, FERREIRA D C, LOUZADA L B, et al. Starch-based edible films and coatings: An eco-friendly alternative for food packaging[J]. Starches for Food Application,2019,10:359−420.
|
[8] |
XIE F, POLLET E, HALLEY P J, et al. Starch-based nano-biocomposites[J]. Progress in Polymer Science,2013,38(10-11):1590−1628. doi: 10.1016/j.progpolymsci.2013.05.002
|
[9] |
WANG L L, GONG Y, LI Y X, et al. Structure and properties of soft rice starch[J]. International Journal of Biological Macromolecules,2020,157:10−16. doi: 10.1016/j.ijbiomac.2020.04.138
|
[10] |
SHEVKANI K, SINGH N, BAJAJ R, et al. Wheat starch production, structure, functionality and applications: A review[J]. International Journal of Food Science & Technology,2016,52(1):38−58.
|
[11] |
ZAIDUL I S M, NORULAINI N, OMAR A K M, et al. Correlations of the composition, minerals, and RVA pasting properties of various potato starches[J]. Starch-Starke,2010,59(6):269−276.
|
[12] |
RIBOTTA P, PALAVECINO P M, PENCI M C, et al. Chemical composition and physical properties of sorghum flour prepared from different sorghum hybrids grown in Argentina[J]. Starch-Starke,2016,68(11-12):1055−1064. doi: 10.1002/star.201600111
|
[13] |
ZHANG D Q, MU T H, SUN H N. Effects of starch from five different botanical sources on the rheological and structural properties of starch-gluten model doughs[J]. Food Research International,2018,103:156−162. doi: 10.1016/j.foodres.2017.10.023
|
[14] |
JOSHI M, ALDRED P, MCKNIGHT S, et al. Physicochemical and functional characteristics of lentil starch[J]. Carbohydrate Polymers,2013,92(2):1484−1496. doi: 10.1016/j.carbpol.2012.10.035
|
[15] |
孙锦, 蒋文龙, 何会泉, 等. 淀粉纳米颗粒的制备及其作为药物载体的研究进展[J]. 现代化工,2018,38(2):61−65. [SUN J, JIANG W L, HE H Q, et al. Preparation and research progress of starch nanoparticles as drug carriers[J]. Modern Chemical Industry,2018,38(2):61−65. doi: 10.16606/j.cnki.issn0253-4320.2018.02.014
|
[16] |
WANG H, FENG T, ZHUANG H, et al. A review on patents of starch nanoparticles: Preparation, applications, and development[J]. Recent Pat Food Nutr Agric,2018,9(1):23−30. doi: 10.2174/2212798410666180321101446
|
[17] |
KAUR J, KAUR G, SHARMA S, et al. Cereal starch nanoparticles-A prospective food additive: A review[J]. Critical Reviews in Food Science and Nutrition,2016,58(7):1097−1107.
|
[18] |
MORAN D, GUTIERREZ G, BLANCO-LOPE M C, et al. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation[J]. Applied Sciences,2021,11(10):4547. doi: 10.3390/app11104547
|
[19] |
BOUFI S, SIHEM B H, MAGNIN A, et al. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration[J]. Ultrasonics Sonochemistry,2018,41:327−336. doi: 10.1016/j.ultsonch.2017.09.033
|
[20] |
ANDRADE I H P, OTONI C G, AMORIM T S, et al. Ultrasound-assisted extraction of starch nanoparticles from breadfruit (Artocarpus altilis (Parkinson) Fosberg)[J]. Colloids and Surfaces:A Physicochemical and Engineering Aspects,2020,586:124277. doi: 10.1016/j.colsurfa.2019.124277
|
[21] |
HAAJ S B, MAGNIN A, PÉTRIER C, et al. Starch nanoparticles formation via high power ultrasonication[J]. Carbohydrate Polymers,2013,92(2):1625−1632. doi: 10.1016/j.carbpol.2012.11.022
|
[22] |
WEI B, CAI C, XU B, et al. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process[J]. Food Chemistry,2017,240:165−173.
|
[23] |
LIU D G, WU Q L, CHEN H H, et al. Transitional properties of starch colloid with particle size reduction from micro-to nanometer[J]. Journal of Colloid and Interface Science,2009,339(1):117−124. doi: 10.1016/j.jcis.2009.07.035
|
[24] |
APOSTOLIDIS E, MANDALA I. Modification of resistant starch nanoparticles using high-pressure homogenization treatment[J]. Food Hydrocolloids,2020,103:150677.
|
[25] |
侯淑瑶, 代养勇, 刘传富, 等. 高压均质法制备甘薯纳米淀粉及其表征[J]. 食品工业科技,2017,38(12):233−238, 242. [HOU S Y, DAI Y Y, LIU C F, et al. Preparation and characterization of sweet potato starch nanoparticles by high pressure homogenization[J]. Science and Technology of Food Industry,2017,38(12):233−238, 242. doi: 10.13386/j.issn1002-0306.2017.12.042
|
[26] |
LI N N, NIU M, ZHANG B J, et al. Effects of concurrent ball milling and octenyl succinylation on structure and physicochemical properties of starch[J]. Carbohydrate Polymers,2017,155:109−116. doi: 10.1016/j.carbpol.2016.08.063
|
[27] |
LIN H, QIN L Z, HONG H, et al. Preparation of starch nanoparticles via high-energy ball milling[J]. Journal of Nano Research,2016,40:174−179. doi: 10.4028/www.scientific.net/JNanoR.40.174
|
[28] |
AHMAD M, GANI A, MASOODI F A, et al. Influence of ball milling on the production of starch nanoparticles and its effect on structural, thermal and functional properties[J]. International Journal of Biological Macromolecules,2020,151:85−91. doi: 10.1016/j.ijbiomac.2020.02.139
|
[29] |
DAI L M, LI C W, ZHANG J, et al. Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis[J]. Carbohydrate Polymers,2018,180:122−127. doi: 10.1016/j.carbpol.2017.10.015
|
[30] |
TZOGANAKIS C, ZHU S. Reactive extrusion of polymers[J]. Encyclopedia of Polymer Science and Technology,2012,9(4):321−330.
|
[31] |
GIEZEN F E, JONGBOOM R, FEIL H, et al. Biopolymer nanoparticles: US, 6677386[P]. 2004-01-13.
|
[32] |
SONG D, THIO Y S, DENG Y. Starch nanoparticle formation via reactive extrusion and related mechanism study[J]. Carbohydrate Polymers,2011,85(1):208−214. doi: 10.1016/j.carbpol.2011.02.016
|
[33] |
SINGH S, SINGH N, EZEKIEL R, et al. Effects of gamma-irradiation on the morphological, structural, thermal and rheological properties of potato starches[J]. Carbohydrate Polymers,2011,83(4):1521−1528. doi: 10.1016/j.carbpol.2010.09.063
|
[34] |
YU Y, WANG J. Effect of γ-ray irradiation on starch granule structure and physicochemical properties of rice[J]. International Journal of Food Science & Technology,2007,40(2):297−303.
|
[35] |
LAMANNA M, MORALES N J, GARCÍA N, et al. Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler[J]. Carbohydrate Polymers,2013,97(1):90−97. doi: 10.1016/j.carbpol.2013.04.081
|
[36] |
TORRES F G, ARROYO J, TINEO C, et al. Tailoring the properties of native andean potato starch nanoparticles using acid and alkaline treatments[J]. Starch-Starke,2019,71(3-4):1800234. doi: 10.1002/star.201800234
|
[37] |
KIM H Y, JE H L, KIM J Y, et al. Characterization of nanoparticles prepared by acid hydrolysis of various starches[J]. Starch-Starke,2012,64(5-6):367−373.
|
[38] |
JEONG O, SHIN M. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch[J]. Food Chemistry,2018,256:77−84. doi: 10.1016/j.foodchem.2018.02.098
|
[39] |
ANGELLIER H, CHOISNARD L, SONIA M B, et al. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology[J]. Biomacromolecules,2004,5(4):1545−1551. doi: 10.1021/bm049914u
|
[40] |
WANG X, CHEN H, LUO Z, et al. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties[J]. Carbohydrate Polymers,2016,138:192−200. doi: 10.1016/j.carbpol.2015.11.006
|
[41] |
GANG Z, LUO Z, XIONG F. Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system[J]. Industrial Crops and Products,2014,52(1):105−110.
|
[42] |
CHIN S F, AZMAN A, PANG S C. Size controlled synthesis of starch nanoparticles by a microemulsion method[J]. Journal of Nanomaterials,2014,2014:1−7.
|
[43] |
JI G, LUO Z, XIAO Z, et al. Synthesis of starch nanoparticles in a novel microemulsion with two ILs substituting two phases[J]. Journal of Materials Science,2016,51(15):7085−7092. doi: 10.1007/s10853-016-9952-1
|
[44] |
BARERAS-URBINA C G, RAMíREZ-WONG B, LÓPEZ-AHUMADA G A, et al. Nano- and micro-particles by nanoprecipitation: Possible application in the food and agricultural industries[J]. International Journal of Food Properties,2016,19(9):1912−1923. doi: 10.1080/10942912.2015.1089279
|
[45] |
DONG Y, CHANG Y J, WANG Q, et al. Effect of operating conditions on size and morphology of amylose nanoparticles prepared by precipitation[J]. Starch-Starke,2015,67(3-4):365−372. doi: 10.1002/star.201400182
|
[46] |
DONG H M, CHEN L Y, ZHANG Q, et al. Optimization of processing parameters to produce nanoparticles prepared by rapid nanoprecipitation of pea starch[J]. Food Hydrocolloids,2021,121:106929. doi: 10.1016/j.foodhyd.2021.106929
|
[47] |
WINARTI C, SUNARTI T C, MANGUNWIDJAJA D, et al. Preparation of arrowroot starch nanoparticles by butanol-complex precipitation, and its as bioactive encapsulation matrix[J]. International Food Research Journal,2014,21(6):2207−2213.
|
[48] |
LUO K, LEE D H, ADRA H J, et al. Synthesis of monodisperse starch microparticles through molecular rearrangement of short-chain glucans from natural waxy maize starch[J]. Carbohydrate Polymers,2019,218:261−268. doi: 10.1016/j.carbpol.2019.05.001
|
[49] |
OH S M, LEE B H, SEO D H, et al. Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans[J]. Food Science and Biotechnology,2020,29(5):585−598. doi: 10.1007/s10068-020-00768-w
|
[50] |
SUN Q J, LI G H, DAI L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry,2014,162:223−228. doi: 10.1016/j.foodchem.2014.04.068
|
[51] |
GONG M, LI X J, XIONG L, et al. Retrogradation property of starch nanoparticles prepared by pullulanase and recrystallization[J]. Starch-Starke,2016,68(3-4):230−238. doi: 10.1002/star.201500115
|
[52] |
LIU C Z, JIANG S S, HAN Z J, et al. In vitro digestion of nanoscale starch particles and evolution of thermal, morphological, and structural characteristics[J]. Food Hydrocolloids,2016,61:344−350. doi: 10.1016/j.foodhyd.2016.05.039
|
[53] |
JIANG S S, DAI L, QIN Y, et al. Preparation and characterization of octenyl succinic anhydride modified taro starch nanoparticles[J]. Plos One,2016,11(2):e0150043. doi: 10.1371/journal.pone.0150043
|
[54] |
MIAO T T, XIONG K, JI N, et al. Resistant starch nanoparticles prepared from debranched starch by medium-temperature recrystallization[J]. International Journal of Biological Macromolecules,2020,155:598−604. doi: 10.1016/j.ijbiomac.2020.03.242
|
[55] |
LIN X, SUN S, WANG B, et al. Structural and physicochemical properties of lotus seed starch nanoparticles[J]. International Journal of Biological Macromolecules,2020,157:240−246. doi: 10.1016/j.ijbiomac.2020.04.155
|
[56] |
OH S M, PARK C S, KIM Y R, et al. Preparation and characterization of self-assembled short-chain glucan aggregates (SCGAs) derived from various starches[J]. Food Hydrocolloids,2020,114:106517.
|
[57] |
LUO K, PARK K H, LEE D H, et al. Self-assembly kinetics of debranched short-chain glucans from waxy maize starch to form spherical microparticles and its applications[J]. Colloids and Surfaces B: Biointerfaces,2019,176:352−359. doi: 10.1016/j.colsurfb.2019.01.002
|
[58] |
KO E B, KIM J Y. Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability[J]. Food Hydrocolloids,2021,120(4):106984.
|
[59] |
LIANG E L, SIVA S P, YONG K H, et al. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion[J]. Advances in Colloid and Interface Science,2020,277:102117. doi: 10.1016/j.cis.2020.102117
|
[60] |
GUIDA C, AGUIAR A C, CUNHA R L. Green techniques for starch modification to stabilize Pickering emulsions: A current review and future perspectives[J]. Current Opinion in Food Science,2021,38:52−61. doi: 10.1016/j.cofs.2020.10.017
|
[61] |
GE S J, XIONG L, LI M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size[J]. Food Chemistry,2017,234:339−347. doi: 10.1016/j.foodchem.2017.04.150
|
[62] |
SHAO P, ZHANG H Y, NIU B, et al. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols[J]. International Journal of Biological Macromolecules,2018,118:2032−2039. doi: 10.1016/j.ijbiomac.2018.07.076
|
[63] |
PARISA S M, NIKFARJAM N, DENG Y L, et al. Pickering emulsion stabilized by amphiphilic pH-sensitive starch nanoparticles as therapeutic containers[J]. Colloids and Surfaces B: Biointerfaces,2019,181:244−251. doi: 10.1016/j.colsurfb.2019.05.046
|
[64] |
WANG C, PAN Z L, ZENG J L. Structure, morphology and properties of benzyl starch nanocrystals[J]. Arabian Journal for Science & Engineering,2014,39(9):6703−6710.
|
[65] |
MOHSENI M S, KHALILZADEH M A, MOHSENI M, et al. Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-starch nanocomposite and characterization of mechanical properties of the films[J]. Biocatalysis and Agricultural Biotechnology,2020,25:101569. doi: 10.1016/j.bcab.2020.101569
|
[66] |
SILVA N M C, CORREIA P R C, DRUZIAN J I, et al. PBAT/TPS composite films reinforced with starch nanoparticles produced by ultrasound[J]. International Journal of Polymer Science,2017,4308261:1−10.
|
[67] |
RODRIGUES A, EMEJE M. Recent applications of starch derivatives in nanodrug delivery[J]. Carbohydrate Polymers,2012,87(2):987−994. doi: 10.1016/j.carbpol.2011.09.044
|
[68] |
AHMAD M, GANI A. Ultrasonicated resveratrol loaded starch nanocapsules: Characterization, bioactivity and release behaviour under in vitro digestion[J]. Carbohydrate Polymers,2020,251:117111.
|
[69] |
HAN F, GAO C, LIU M. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers[J]. Journal of Nanoscience and Nanotechnology,2013,13(10):6996−7007. doi: 10.1166/jnn.2013.7759
|
[70] |
NALLASAMY P, RAMALINGAM T, NOORUDDIN T, et al. Polyherbal drug loaded starch nanoparticles as promising drug delivery system: Antimicrobial, antibiofilm and neuroprotective studies[J]. Process Biochemistry,2020,92:355−364. doi: 10.1016/j.procbio.2020.01.026
|
[71] |
LI Q, CHEN B, LIN P, et al. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes[J]. International Journal of Phytoremediation,2016,18(2):103−109. doi: 10.1080/15226514.2014.898017
|
[72] |
GUO J, WANG J K, ZHENG G, et al. A TiO2/crosslinked carboxymethyl starch composite for high-efficiency adsorption and photodegradation of cationic golden yellow X-GL dye[J]. Environmental Science and Pollution Research,2019,26(24):24395−24406. doi: 10.1007/s11356-019-05685-y
|
[73] |
LIU Q, LI F, LU H, et al. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles[J]. Food Chemistry,2018,242:256−263. doi: 10.1016/j.foodchem.2017.09.071
|
[74] |
AWOKOYA K N, ONINLA V O, BELLO D J. Synthesis of oxidized dioscorea dumentorum starch nanoparticles for the adsorption of lead (II) and cadmium (II) ions from waste water[J]. Environmental Nanotechnology, Monitoring & Management,2021,15:100440.
|
[75] |
GUO J, WANG J K, ZHENG G, et al. Optimization of the removal of reactive golden yellow SNE dye by cross-linked cationic starch and its adsorption properties[J]. Journal of Engineered Fibers and Fabrics,2019,14:1−13.
|
[76] |
ABIDIN M N Z, GOH P S, ISMAIL A F, et al. Highly adsorptive oxidized starch nanoparticles for efficient urea removal[J]. Carbohydrate Polymers,2018,201:257−263. doi: 10.1016/j.carbpol.2018.08.069
|
1. |
张瑞娟,苏艳群,夏菲,刘金刚,肖贵华,孙德文,杨小博,黄举. 不同种类研磨淀粉用于纸质食品包装的防油性能研究. 中国造纸. 2025(01): 62-68+84 .
![]() | |
2. |
李晶晶,张甜甜,佟岳,刘培玲. 高静压协同酸水解促淀粉颗粒纳米晶体化. 中国食品学报. 2024(12): 57-68 .
![]() | |
3. |
张芮娟. 固体制剂制药工艺及质量控制研究. 粘接. 2023(04): 149-152 .
![]() | |
4. |
高琦,张首央,唐子程,彭雪,王宁,薛友林. 蛋白质纳米颗粒的制备及其在食品领域的应用研究进展. 食品工业科技. 2023(11): 30-37 .
![]() | |
5. |
段智颖,王申宛,艾斌凌,郑丽丽,郑晓燕,杨旸,校导,杨劲松,盛占武. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质. 食品科学. 2023(12): 74-83 .
![]() |