LIU Xiaofei, LI Xiang, LIAN Jie, et al. Research Progress on Preparation and Application of Starch Nanoparticles[J]. Science and Technology of Food Industry, 2022, 43(21): 480−486. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120323.
Citation: LIU Xiaofei, LI Xiang, LIAN Jie, et al. Research Progress on Preparation and Application of Starch Nanoparticles[J]. Science and Technology of Food Industry, 2022, 43(21): 480−486. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120323.

Research Progress on Preparation and Application of Starch Nanoparticles

More Information
  • Received Date: December 29, 2021
  • Available Online: August 21, 2022
  • Starch is a kind of biodegradable biopolymer with a wide range of sources and low price. With the development of nanotechnology, starch nanoparticles have become a research hotspot due to their unique properties different from native starch. In this paper, the structure characteristics of different sources of starch is introduced, the preparation of starch nanoparticles of top-down and bottom-up method and the advantages and disadvantages of various preparation methods are summarized, the effects of starch nanoparticles on Pickering emulsion stability, performance improvement of composite material, delivery of targeted drug and adsorption of industrial waste water are reviewed, and the application prospect of starch nanoparticles in food, industry, medicine and other fields is prospected in order to provide the theoretical basis for the research of starch nanoparticles.
  • [1]
    NASROLLAHZADEH M, SAJJADI M, IRAVANI S, et al. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review[J]. Carbohydrate Polymers,2021,251:116986. doi: 10.1016/j.carbpol.2020.116986
    [2]
    CHAVAN P, SINHMAR A, NEHRA M, et al. Impact on various properties of native starch after synthesis of starch nanoparticles: A review[J]. Food Chemistry,2021,364(15):130416.
    [3]
    CAMPELO P H, SANTANA A S, CLERICI M. Starch nanoparticles: Production methods, structure, and properties for food applications[J]. Current Opinion in Food Science,2020,33:136−140. doi: 10.1016/j.cofs.2020.04.007
    [4]
    ZHONG Y Y, QU J Z, LI Z H, et al. Rice starch multi-level structure and functional relationships[J]. Carbohydrate Polymers,2022,275:118777. doi: 10.1016/j.carbpol.2021.118777
    [5]
    LUZI F, FORTUNATI E, MICHELE A D, et al. Nanostructured starch combined with hydroxytyrosol in poly (vinyl alcohol) based ternary films as active packaging system[J]. Carbohydrate Polymers,2018,193:239−248. doi: 10.1016/j.carbpol.2018.03.079
    [6]
    LI H, GILBERT R G. Starch molecular structure: The basis for an improved understanding of cooked rice texture[J]. Carbohydrate Polymers,2018,195:9−17. doi: 10.1016/j.carbpol.2018.04.065
    [7]
    PELISSARI F M, FERREIRA D C, LOUZADA L B, et al. Starch-based edible films and coatings: An eco-friendly alternative for food packaging[J]. Starches for Food Application,2019,10:359−420.
    [8]
    XIE F, POLLET E, HALLEY P J, et al. Starch-based nano-biocomposites[J]. Progress in Polymer Science,2013,38(10-11):1590−1628. doi: 10.1016/j.progpolymsci.2013.05.002
    [9]
    WANG L L, GONG Y, LI Y X, et al. Structure and properties of soft rice starch[J]. International Journal of Biological Macromolecules,2020,157:10−16. doi: 10.1016/j.ijbiomac.2020.04.138
    [10]
    SHEVKANI K, SINGH N, BAJAJ R, et al. Wheat starch production, structure, functionality and applications: A review[J]. International Journal of Food Science & Technology,2016,52(1):38−58.
    [11]
    ZAIDUL I S M, NORULAINI N, OMAR A K M, et al. Correlations of the composition, minerals, and RVA pasting properties of various potato starches[J]. Starch-Starke,2010,59(6):269−276.
    [12]
    RIBOTTA P, PALAVECINO P M, PENCI M C, et al. Chemical composition and physical properties of sorghum flour prepared from different sorghum hybrids grown in Argentina[J]. Starch-Starke,2016,68(11-12):1055−1064. doi: 10.1002/star.201600111
    [13]
    ZHANG D Q, MU T H, SUN H N. Effects of starch from five different botanical sources on the rheological and structural properties of starch-gluten model doughs[J]. Food Research International,2018,103:156−162. doi: 10.1016/j.foodres.2017.10.023
    [14]
    JOSHI M, ALDRED P, MCKNIGHT S, et al. Physicochemical and functional characteristics of lentil starch[J]. Carbohydrate Polymers,2013,92(2):1484−1496. doi: 10.1016/j.carbpol.2012.10.035
    [15]
    孙锦, 蒋文龙, 何会泉, 等. 淀粉纳米颗粒的制备及其作为药物载体的研究进展[J]. 现代化工,2018,38(2):61−65. [SUN J, JIANG W L, HE H Q, et al. Preparation and research progress of starch nanoparticles as drug carriers[J]. Modern Chemical Industry,2018,38(2):61−65. doi: 10.16606/j.cnki.issn0253-4320.2018.02.014
    [16]
    WANG H, FENG T, ZHUANG H, et al. A review on patents of starch nanoparticles: Preparation, applications, and development[J]. Recent Pat Food Nutr Agric,2018,9(1):23−30. doi: 10.2174/2212798410666180321101446
    [17]
    KAUR J, KAUR G, SHARMA S, et al. Cereal starch nanoparticles-A prospective food additive: A review[J]. Critical Reviews in Food Science and Nutrition,2016,58(7):1097−1107.
    [18]
    MORAN D, GUTIERREZ G, BLANCO-LOPE M C, et al. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation[J]. Applied Sciences,2021,11(10):4547. doi: 10.3390/app11104547
    [19]
    BOUFI S, SIHEM B H, MAGNIN A, et al. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration[J]. Ultrasonics Sonochemistry,2018,41:327−336. doi: 10.1016/j.ultsonch.2017.09.033
    [20]
    ANDRADE I H P, OTONI C G, AMORIM T S, et al. Ultrasound-assisted extraction of starch nanoparticles from breadfruit (Artocarpus altilis (Parkinson) Fosberg)[J]. Colloids and Surfaces:A Physicochemical and Engineering Aspects,2020,586:124277. doi: 10.1016/j.colsurfa.2019.124277
    [21]
    HAAJ S B, MAGNIN A, PÉTRIER C, et al. Starch nanoparticles formation via high power ultrasonication[J]. Carbohydrate Polymers,2013,92(2):1625−1632. doi: 10.1016/j.carbpol.2012.11.022
    [22]
    WEI B, CAI C, XU B, et al. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process[J]. Food Chemistry,2017,240:165−173.
    [23]
    LIU D G, WU Q L, CHEN H H, et al. Transitional properties of starch colloid with particle size reduction from micro-to nanometer[J]. Journal of Colloid and Interface Science,2009,339(1):117−124. doi: 10.1016/j.jcis.2009.07.035
    [24]
    APOSTOLIDIS E, MANDALA I. Modification of resistant starch nanoparticles using high-pressure homogenization treatment[J]. Food Hydrocolloids,2020,103:150677.
    [25]
    侯淑瑶, 代养勇, 刘传富, 等. 高压均质法制备甘薯纳米淀粉及其表征[J]. 食品工业科技,2017,38(12):233−238, 242. [HOU S Y, DAI Y Y, LIU C F, et al. Preparation and characterization of sweet potato starch nanoparticles by high pressure homogenization[J]. Science and Technology of Food Industry,2017,38(12):233−238, 242. doi: 10.13386/j.issn1002-0306.2017.12.042
    [26]
    LI N N, NIU M, ZHANG B J, et al. Effects of concurrent ball milling and octenyl succinylation on structure and physicochemical properties of starch[J]. Carbohydrate Polymers,2017,155:109−116. doi: 10.1016/j.carbpol.2016.08.063
    [27]
    LIN H, QIN L Z, HONG H, et al. Preparation of starch nanoparticles via high-energy ball milling[J]. Journal of Nano Research,2016,40:174−179. doi: 10.4028/www.scientific.net/JNanoR.40.174
    [28]
    AHMAD M, GANI A, MASOODI F A, et al. Influence of ball milling on the production of starch nanoparticles and its effect on structural, thermal and functional properties[J]. International Journal of Biological Macromolecules,2020,151:85−91. doi: 10.1016/j.ijbiomac.2020.02.139
    [29]
    DAI L M, LI C W, ZHANG J, et al. Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis[J]. Carbohydrate Polymers,2018,180:122−127. doi: 10.1016/j.carbpol.2017.10.015
    [30]
    TZOGANAKIS C, ZHU S. Reactive extrusion of polymers[J]. Encyclopedia of Polymer Science and Technology,2012,9(4):321−330.
    [31]
    GIEZEN F E, JONGBOOM R, FEIL H, et al. Biopolymer nanoparticles: US, 6677386[P]. 2004-01-13.
    [32]
    SONG D, THIO Y S, DENG Y. Starch nanoparticle formation via reactive extrusion and related mechanism study[J]. Carbohydrate Polymers,2011,85(1):208−214. doi: 10.1016/j.carbpol.2011.02.016
    [33]
    SINGH S, SINGH N, EZEKIEL R, et al. Effects of gamma-irradiation on the morphological, structural, thermal and rheological properties of potato starches[J]. Carbohydrate Polymers,2011,83(4):1521−1528. doi: 10.1016/j.carbpol.2010.09.063
    [34]
    YU Y, WANG J. Effect of γ-ray irradiation on starch granule structure and physicochemical properties of rice[J]. International Journal of Food Science & Technology,2007,40(2):297−303.
    [35]
    LAMANNA M, MORALES N J, GARCÍA N, et al. Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler[J]. Carbohydrate Polymers,2013,97(1):90−97. doi: 10.1016/j.carbpol.2013.04.081
    [36]
    TORRES F G, ARROYO J, TINEO C, et al. Tailoring the properties of native andean potato starch nanoparticles using acid and alkaline treatments[J]. Starch-Starke,2019,71(3-4):1800234. doi: 10.1002/star.201800234
    [37]
    KIM H Y, JE H L, KIM J Y, et al. Characterization of nanoparticles prepared by acid hydrolysis of various starches[J]. Starch-Starke,2012,64(5-6):367−373.
    [38]
    JEONG O, SHIN M. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch[J]. Food Chemistry,2018,256:77−84. doi: 10.1016/j.foodchem.2018.02.098
    [39]
    ANGELLIER H, CHOISNARD L, SONIA M B, et al. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology[J]. Biomacromolecules,2004,5(4):1545−1551. doi: 10.1021/bm049914u
    [40]
    WANG X, CHEN H, LUO Z, et al. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties[J]. Carbohydrate Polymers,2016,138:192−200. doi: 10.1016/j.carbpol.2015.11.006
    [41]
    GANG Z, LUO Z, XIONG F. Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system[J]. Industrial Crops and Products,2014,52(1):105−110.
    [42]
    CHIN S F, AZMAN A, PANG S C. Size controlled synthesis of starch nanoparticles by a microemulsion method[J]. Journal of Nanomaterials,2014,2014:1−7.
    [43]
    JI G, LUO Z, XIAO Z, et al. Synthesis of starch nanoparticles in a novel microemulsion with two ILs substituting two phases[J]. Journal of Materials Science,2016,51(15):7085−7092. doi: 10.1007/s10853-016-9952-1
    [44]
    BARERAS-URBINA C G, RAMíREZ-WONG B, LÓPEZ-AHUMADA G A, et al. Nano- and micro-particles by nanoprecipitation: Possible application in the food and agricultural industries[J]. International Journal of Food Properties,2016,19(9):1912−1923. doi: 10.1080/10942912.2015.1089279
    [45]
    DONG Y, CHANG Y J, WANG Q, et al. Effect of operating conditions on size and morphology of amylose nanoparticles prepared by precipitation[J]. Starch-Starke,2015,67(3-4):365−372. doi: 10.1002/star.201400182
    [46]
    DONG H M, CHEN L Y, ZHANG Q, et al. Optimization of processing parameters to produce nanoparticles prepared by rapid nanoprecipitation of pea starch[J]. Food Hydrocolloids,2021,121:106929. doi: 10.1016/j.foodhyd.2021.106929
    [47]
    WINARTI C, SUNARTI T C, MANGUNWIDJAJA D, et al. Preparation of arrowroot starch nanoparticles by butanol-complex precipitation, and its as bioactive encapsulation matrix[J]. International Food Research Journal,2014,21(6):2207−2213.
    [48]
    LUO K, LEE D H, ADRA H J, et al. Synthesis of monodisperse starch microparticles through molecular rearrangement of short-chain glucans from natural waxy maize starch[J]. Carbohydrate Polymers,2019,218:261−268. doi: 10.1016/j.carbpol.2019.05.001
    [49]
    OH S M, LEE B H, SEO D H, et al. Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans[J]. Food Science and Biotechnology,2020,29(5):585−598. doi: 10.1007/s10068-020-00768-w
    [50]
    SUN Q J, LI G H, DAI L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry,2014,162:223−228. doi: 10.1016/j.foodchem.2014.04.068
    [51]
    GONG M, LI X J, XIONG L, et al. Retrogradation property of starch nanoparticles prepared by pullulanase and recrystallization[J]. Starch-Starke,2016,68(3-4):230−238. doi: 10.1002/star.201500115
    [52]
    LIU C Z, JIANG S S, HAN Z J, et al. In vitro digestion of nanoscale starch particles and evolution of thermal, morphological, and structural characteristics[J]. Food Hydrocolloids,2016,61:344−350. doi: 10.1016/j.foodhyd.2016.05.039
    [53]
    JIANG S S, DAI L, QIN Y, et al. Preparation and characterization of octenyl succinic anhydride modified taro starch nanoparticles[J]. Plos One,2016,11(2):e0150043. doi: 10.1371/journal.pone.0150043
    [54]
    MIAO T T, XIONG K, JI N, et al. Resistant starch nanoparticles prepared from debranched starch by medium-temperature recrystallization[J]. International Journal of Biological Macromolecules,2020,155:598−604. doi: 10.1016/j.ijbiomac.2020.03.242
    [55]
    LIN X, SUN S, WANG B, et al. Structural and physicochemical properties of lotus seed starch nanoparticles[J]. International Journal of Biological Macromolecules,2020,157:240−246. doi: 10.1016/j.ijbiomac.2020.04.155
    [56]
    OH S M, PARK C S, KIM Y R, et al. Preparation and characterization of self-assembled short-chain glucan aggregates (SCGAs) derived from various starches[J]. Food Hydrocolloids,2020,114:106517.
    [57]
    LUO K, PARK K H, LEE D H, et al. Self-assembly kinetics of debranched short-chain glucans from waxy maize starch to form spherical microparticles and its applications[J]. Colloids and Surfaces B: Biointerfaces,2019,176:352−359. doi: 10.1016/j.colsurfb.2019.01.002
    [58]
    KO E B, KIM J Y. Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability[J]. Food Hydrocolloids,2021,120(4):106984.
    [59]
    LIANG E L, SIVA S P, YONG K H, et al. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion[J]. Advances in Colloid and Interface Science,2020,277:102117. doi: 10.1016/j.cis.2020.102117
    [60]
    GUIDA C, AGUIAR A C, CUNHA R L. Green techniques for starch modification to stabilize Pickering emulsions: A current review and future perspectives[J]. Current Opinion in Food Science,2021,38:52−61. doi: 10.1016/j.cofs.2020.10.017
    [61]
    GE S J, XIONG L, LI M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size[J]. Food Chemistry,2017,234:339−347. doi: 10.1016/j.foodchem.2017.04.150
    [62]
    SHAO P, ZHANG H Y, NIU B, et al. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols[J]. International Journal of Biological Macromolecules,2018,118:2032−2039. doi: 10.1016/j.ijbiomac.2018.07.076
    [63]
    PARISA S M, NIKFARJAM N, DENG Y L, et al. Pickering emulsion stabilized by amphiphilic pH-sensitive starch nanoparticles as therapeutic containers[J]. Colloids and Surfaces B: Biointerfaces,2019,181:244−251. doi: 10.1016/j.colsurfb.2019.05.046
    [64]
    WANG C, PAN Z L, ZENG J L. Structure, morphology and properties of benzyl starch nanocrystals[J]. Arabian Journal for Science & Engineering,2014,39(9):6703−6710.
    [65]
    MOHSENI M S, KHALILZADEH M A, MOHSENI M, et al. Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-starch nanocomposite and characterization of mechanical properties of the films[J]. Biocatalysis and Agricultural Biotechnology,2020,25:101569. doi: 10.1016/j.bcab.2020.101569
    [66]
    SILVA N M C, CORREIA P R C, DRUZIAN J I, et al. PBAT/TPS composite films reinforced with starch nanoparticles produced by ultrasound[J]. International Journal of Polymer Science,2017,4308261:1−10.
    [67]
    RODRIGUES A, EMEJE M. Recent applications of starch derivatives in nanodrug delivery[J]. Carbohydrate Polymers,2012,87(2):987−994. doi: 10.1016/j.carbpol.2011.09.044
    [68]
    AHMAD M, GANI A. Ultrasonicated resveratrol loaded starch nanocapsules: Characterization, bioactivity and release behaviour under in vitro digestion[J]. Carbohydrate Polymers,2020,251:117111.
    [69]
    HAN F, GAO C, LIU M. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers[J]. Journal of Nanoscience and Nanotechnology,2013,13(10):6996−7007. doi: 10.1166/jnn.2013.7759
    [70]
    NALLASAMY P, RAMALINGAM T, NOORUDDIN T, et al. Polyherbal drug loaded starch nanoparticles as promising drug delivery system: Antimicrobial, antibiofilm and neuroprotective studies[J]. Process Biochemistry,2020,92:355−364. doi: 10.1016/j.procbio.2020.01.026
    [71]
    LI Q, CHEN B, LIN P, et al. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes[J]. International Journal of Phytoremediation,2016,18(2):103−109. doi: 10.1080/15226514.2014.898017
    [72]
    GUO J, WANG J K, ZHENG G, et al. A TiO2/crosslinked carboxymethyl starch composite for high-efficiency adsorption and photodegradation of cationic golden yellow X-GL dye[J]. Environmental Science and Pollution Research,2019,26(24):24395−24406. doi: 10.1007/s11356-019-05685-y
    [73]
    LIU Q, LI F, LU H, et al. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles[J]. Food Chemistry,2018,242:256−263. doi: 10.1016/j.foodchem.2017.09.071
    [74]
    AWOKOYA K N, ONINLA V O, BELLO D J. Synthesis of oxidized dioscorea dumentorum starch nanoparticles for the adsorption of lead (II) and cadmium (II) ions from waste water[J]. Environmental Nanotechnology, Monitoring & Management,2021,15:100440.
    [75]
    GUO J, WANG J K, ZHENG G, et al. Optimization of the removal of reactive golden yellow SNE dye by cross-linked cationic starch and its adsorption properties[J]. Journal of Engineered Fibers and Fabrics,2019,14:1−13.
    [76]
    ABIDIN M N Z, GOH P S, ISMAIL A F, et al. Highly adsorptive oxidized starch nanoparticles for efficient urea removal[J]. Carbohydrate Polymers,2018,201:257−263. doi: 10.1016/j.carbpol.2018.08.069
  • Cited by

    Periodical cited type(5)

    1. 张瑞娟,苏艳群,夏菲,刘金刚,肖贵华,孙德文,杨小博,黄举. 不同种类研磨淀粉用于纸质食品包装的防油性能研究. 中国造纸. 2025(01): 62-68+84 .
    2. 李晶晶,张甜甜,佟岳,刘培玲. 高静压协同酸水解促淀粉颗粒纳米晶体化. 中国食品学报. 2024(12): 57-68 .
    3. 张芮娟. 固体制剂制药工艺及质量控制研究. 粘接. 2023(04): 149-152 .
    4. 高琦,张首央,唐子程,彭雪,王宁,薛友林. 蛋白质纳米颗粒的制备及其在食品领域的应用研究进展. 食品工业科技. 2023(11): 30-37 . 本站查看
    5. 段智颖,王申宛,艾斌凌,郑丽丽,郑晓燕,杨旸,校导,杨劲松,盛占武. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质. 食品科学. 2023(12): 74-83 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (838) PDF downloads (73) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return