WU Min, DU Juan, WANG Man, et al. Effects of Nitric Oxide on Storage Quality and Microstructure of Seedless White Grape Stem[J]. Science and Technology of Food Industry, 2022, 43(21): 350−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120321.
Citation: WU Min, DU Juan, WANG Man, et al. Effects of Nitric Oxide on Storage Quality and Microstructure of Seedless White Grape Stem[J]. Science and Technology of Food Industry, 2022, 43(21): 350−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120321.

Effects of Nitric Oxide on Storage Quality and Microstructure of Seedless White Grape Stem

More Information
  • Received Date: December 29, 2021
  • Available Online: August 29, 2022
  • In order to study the effect of nitric oxide (NO) on the physicochemical quality, pigment accumulation and microstructure of thompson seedless grape during storage. The grapes were fumigated with 500 μL/L NO or air for 2 h and then stored at 0±0.5 ℃ for 25 days, afterwards the grapes were separately moved to simulated shelf conditions for 3 days at 8±0.5 ℃ and 20±0.5 ℃ at the same time. The results showed that NO significantly slowed down the weight loss of grape rachis and the increase of electrical conductivity, inhibited the degradation of chlorophyll and the accumulation of anthocyanin in grape rachis compared with the control group. NO reduced the quantity and strength of cracks on the surface of spine, but also helped to maintain the tightness of intercellular space arrangement, slowed down the depletion of inorganic matter in the xylem, thus reducing the degree of partial depressions in the tissues. Tissue staining analysis showed that NO maintained the volume of rachis epidermal cells, slowed down the cell wall thickening and corkification, in addition, inhibited the accumulation of brown matter in the epidermis. In conclusion, NO fumigation was conducive to maintaining the quality of grape rachis, delaying the browning by inhibiting chlorophyll degradation and anthocyanin accumulation, moreover, maintaining the integrity of the rachis microstructure.
  • [1]
    刘崇怀. 无核葡萄品种的无核性来源分析[J]. 植物遗传资源学报,2003,4(1):58−62. [LIU C H. Analysis on seedless source of seedless grape breeding[J]. Journal of Plant Genetic Resources,2003,4(1):58−62. doi: 10.3969/j.issn.1672-1810.2003.01.013
    [2]
    LI A, ZUTAHY T, DAUS T, et al. The effects of 1-methylcyclopropane and ethylene on postharvest rachis browning in table grapes[J]. Postharvest Biology and Technology,2015,107:16−22. doi: 10.1016/j.postharvbio.2015.04.001
    [3]
    LOAY A A, EI-BORYA M S. Improving fruit cluster quality attributes of ‘Flame Seedless’ grapes using preharvest application of ascorbic and salicylic acids[J]. Scientia Horticulturae,2018,233:339−348. doi: 10.1016/j.scienta.2018.02.010
    [4]
    LESHEM Y Y, HARAMATY E, ILUZ D, et al. Effect of stress nitric oxide (NO): Interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenase activitys[J]. Plant Physiology and Biochemistry,1997,35:573−579.
    [5]
    周慧娟. 水蜜桃发育和采后果皮的色素和芳香物质变化及相关蛋白组学研究[D]. 南京: 南京农业大学, 2018

    ZHOU H J. Changes of coloured and aromatic compounds of honey peach peel and related proteomics studies during development and postharvest[D]. Nanjing: Nanjing Agricultural University, 2018.
    [6]
    程志华, 龚霄, 刘洋洋, 等. 不同贮藏温度对采后番荔枝品质的影响[J]. 食品工业科技,2019,40(9):264−268, 274. [CHENG Z H, GONG X, LIU Y Y, et al. Effects of different storage temperatures on quality of postharvest Annona squamosa L doi: 10.13386/j.issn1002-0306.2019.09.046

    J]. Science and Technology of Food Industry,2019,40(9):264−268, 274. doi: 10.13386/j.issn1002-0306.2019.09.046
    [7]
    MUKHERJEE S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants[J]. Nitric Oxide,2019(82):25−34.
    [8]
    范林林, 王清, 左进华, 等. 外源NO处理对茄子贮藏品质的影响[J]. 中国食品学报,2017,17(1):186−192. [FAN L L, WANG Q, ZUO J H, et al. The effect of exogenous NO treatment on eggplant quality during storag[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(1):186−192. doi: 10.16429/j.1009-7848.2017.01.024
    [9]
    杨杨. 一氧化氮参与调控番茄果实采后成熟衰老信号机制研究[D]. 北京: 中国农业大学, 2018

    YANG Y. The signaling mechanism of nitric oxide on ripening and senescence of posthavest tomato fruit[D]. Beijing: China Agricultural University, 2018.
    [10]
    ZHANG Z, XU J, CHEN Y, et al. Nitric oxide treatment maintains postharvest quality of table grapes by mitigation of oxidative damage[J]. Postharvest Biology and Technology,2019,152:9−18. doi: 10.1016/j.postharvbio.2019.01.015
    [11]
    WANG Y S, LYO Z S, ZIA U K, et al. Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress[J]. Postharvest Biology & Technology,2015,108:21−27.
    [12]
    ELENA T I, EMST J W. Nitric oxide prevents wound-induced browning and delays senescence through inhibition of hydrogen peroxide accumulation in fresh-cut lettuce[J]. Innovative Food Science and Emerging Technologies,2015,30:157−169. doi: 10.1016/j.ifset.2015.06.001
    [13]
    WU Z H, DONG C H, WEI J, et al. A transcriptional study of the effects of nitric oxide on rachis browning in table grapes cv. Thompson Seedless[J]. Postharvest Biology and Technology,2021:175.
    [14]
    池铭, 孙丽娟, 马立杰, 等. 不同光质处理对采后桃果皮色泽及花色苷代谢的影响[J]. 食品科学,2022,14:1−12. [CHI M, SUN L J, MA L J, et al. Effects of different light quality treatments on color luster and anthocyanin metabolism of postharvest peach skin[J]. Food Science,2022,14:1−12. doi: 10.7506/spkx1002-6630-20210813-176
    [15]
    DILARA K T, FIGEN K. Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes[J]. Food Chemistry,2017,221:187−195. doi: 10.1016/j.foodchem.2016.09.195
    [16]
    ZHANG T, CHE F B, ZHANG H, et al. Effect of nitric oxide treatment on chilling injury, antioxidant enzymes and expression of the CmCBF1 and CmCBF3 genes in cold-stored Hami melon (Cucumis melo L.) fruit[J]. Postharvest Biology and Technology,2017,127:88−98. doi: 10.1016/j.postharvbio.2017.01.005
    [17]
    王锋, 杨青珍, 赵旗峰, 等. 外源褪黑素对甜樱桃果实褐变和品质的影响[J]. 食品工业科技,2021,12(23):1−14. [WANG F, YANG Q Z, ZHAO Q F, et al. Effect of melatonin treatment on browning and quality of sweet cherry[J]. Science and Technology of Food Industry,2021,12(23):1−14. doi: 10.13386/j.issn1002-0306.2021060226
    [18]
    CHEN Y X, WEI Q, KUAI B K, et al. Molecular cloning and characterization of a chlorophyll degradation regulatory gene from bamboo[J]. Biology Plantarum,2013,57(1):63−69. doi: 10.1007/s10535-012-0139-6
    [19]
    曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007: 38−40

    CAO J K, JIANG W B, ZHAO Y M. Physiological and biochemical experiment guidance for fruits and vegetables after harvest[M]. China Light Industry Press, 2007: 38−40.
    [20]
    SHAHIN G I, SEYED H J, MAHMOOD G, et al. The inhibitory effect of nitric oxide on enzymatic browning reactions of in-package fresh pistachios (Pistacia vera L.)[J]. Postharvest Biology and Technology,2020,159:110998. doi: 10.1016/j.postharvbio.2019.110998
    [21]
    周江. 二氧化硫(SO2)间歇熏蒸对红地球葡萄采后品质的影响[D]. 乌鲁木齐: 新疆农业大学, 2016

    ZHOU J. Effects of sulfur dioxide intermittent fumigation on postharvest quality of red globe grapes during storage[D]. Urumqi: Xinjiang Agricultural University, 2016.
    [22]
    郑操, 喻书诚, 陈涛. 裂壶藻突变株S1的细胞生长及其油脂合成的超微结构[J]. 食品工业科技,2020,41(16):127−130, 149. [ZHENG C, YU S C, CHEN T. The microscopic performance of oil synthesis and its growth of Schizochytrium sp. mutant strain S1[J]. Science and Technology of Food Industry,2020,41(16):127−130, 149. doi: 10.13386/j.issn1002-0306.2020.16.021
    [23]
    CHRISTIAN S, IVAN B, PABLO S, et al. Effect of modified atmosphere packaging (MAP) on rachis quality of ‘Red Globe’ table grape variety[J]. Postharvest Biology and Technology,2016,119:33−40. doi: 10.1016/j.postharvbio.2016.04.021
    [24]
    刘士伟, 于惠. 一种基于色相角算法的图像质量评价模型[J]. 包装工程,2012(17):94−97. [LIU S W, YU H. An image quality evaluation model based on hue angle algorithm[J]. Packaging Engineering,2012(17):94−97. doi: 10.19554/j.cnki.1001-3563.2012.17.023
    [25]
    王红林, 王宇, 赵晓珍, 等. 外源NO处理对百香果采后贮藏品质的影响[J]. 中国南方果树,2021,50(5):54−61. [WANG H Y, WANG Y, ZHAO X Z, et al. Effects of exogenous no treatment on postharvest storage quality of passion fruit[J]. Fruit Trees in Southern China,2021,50(5):54−61. doi: 10.13938/j.issn.1007-1431.20200727
    [26]
    DUAN X, SU X, YOU Y, et al. Effect of nitric oxide on pericarp browning of harvested longan fruit in relation to phenolic metabolism[J]. Food Chemistry,2006,104(2):571−576.
    [27]
    KOLLA, RAGHAVENDRA A S, RAGHAVENDRA. Nitric oxide is a signaling intermediate during bicarbonate‐induced stomatal closure in Pisum sativum[J]. Physiologia Plantarum,2007,130(1):91−98. doi: 10.1111/j.1399-3054.2007.00887.x
    [28]
    LI L, TIAN S L, JIANG J, et al. Regulation of nitric oxide to Capsicum under lower light intensities[J]. South African Journal of Botany,2020,132:268−276. doi: 10.1016/j.sajb.2020.05.020
    [29]
    WANG L, WANG Z X, LI J H, et al. Morphological and quality characterization of grape berry and rachis in response to postharvest 1-methylcyclopropene and elevated oxygen and carbon dioxide atmospheres[J]. Postharvest Biology and Technology,2019,153:107−117. doi: 10.1016/j.postharvbio.2019.04.001
    [30]
    LIU Y B. Nitric oxide fumigation for control of western flower thrips and its safety to postharvest quality of fresh fruit and vegetables[J]. Journal of Asia-Pacific Entomology,2016,19(4):1191−1195. doi: 10.1016/j.aspen.2016.10.013
    [31]
    黄凯美, 颜韶兵, 刘霁虹, 等. NO对采后小白菜品质的影响[J]. 浙江农业科学,2016:523−525, 541. [HUANG K M, YAN S B, LIU Q H, et al. Effect of no on the quality of postharvest Chinese cabbage[J]. Journal of Zhejiang Agricultural Sciences,2016:523−525, 541. doi: 10.16178/j.issn.0528-9017.20160423
    [32]
    JIANG Y. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browning[J]. Journal of the Science of Food and Agriculture,2000,80:305−310. doi: 10.1002/1097-0010(200002)80:3<305::AID-JSFA518>3.0.CO;2-H
    [33]
    李小娟, 聂钰洪, 刘琦琦, 等. 鲜食葡萄品种多酚类物质含量及抗氧化活性分析[J]. 北方园艺,2017(21):37−42. [LI X J, NIE Y H, LIU Q Q, et al. Analysis of polyphenol content and antioxidant activity of fresh grape varieties[J]. Northern Gardening,2017(21):37−42.
    [34]
    谢兆森, 曹红梅, 李勃, 等. 巨峰葡萄果实不同发育期维管束水分运输变化[J]. 中国农业科学,2012,45(1):111−117. [XIE Z S, CAO H M, LI B, et al. Changes of water transportation in berry vascular bundle at different developmental phases of kyoho grape berry changes of water transportation in berry vascular bundle at different developmental phases of kyoho grape berry[J]. Agricultural Sciences in China,2012,45(1):111−117. doi: 10.3864/j.issn.0578-1752.2012.01.013
    [35]
    陈发河, 张美姿, 吴光斌. NO处理延缓采后枇杷果实木质化劣变及其与能量代谢的关系[J]. 中国农业科学,2014,47(12):2425−2434. [CHEN F H, ZHANG M Z, WU G B. Study of lignification’s delaying and its relationship with energy metabolism in loquat fruits after nitric oxide fumigation[J]. Agricultural Sciences in China,2014,47(12):2425−2434. doi: 10.3864/j.issn.0578-1752.2014.12.015
    [36]
    宋丽君. 一氧化氮处理对猕猴桃果实的保鲜效应及其生理机制研究[D]. 杭州: 浙江工商大学, 2016

    SONG L J. Effect of nitric oxide treatment on preservation in kiwifruit and its involve physiological mechanism[D]. Hangzhou: Zhejiang Gongshang University, 2016.
    [37]
    王家保. 采后荔枝果皮衰老过程中生理变化与基因差异表达分析[D]. 海口: 华南热带农业大学, 2007

    WANG J B. Analysis of physiological changes and differential gene expression during postharvest senescence of litchi pericarp[D]. Haikou: South China University of Tropical Agriculture, 2007.
    [38]
    姜丹. 水杨酸、硫化氢调控鲜切南瓜保鲜信号的机制[D]. 大连: 大连工业大学, 2016

    JIANG D. Mechanism of controlling fresh-keeping pumpkin with salicylic acid and hydrogen sulfide[D]. Dalian: Dalian Polytechnic University, 2016.
  • Related Articles

    [1]CHEN Hao, YIN Junye, HAO Jianxiong, ZHAO Dandan. Research Progress on the Bioactivity and Mechanisms of Jujube Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(13): 342-351. DOI: 10.13386/j.issn1002-0306.2023070276
    [2]TANG Mengjia, LIU Qingqing, LIU Yanxin, WANG Yicui. Research Progress on Bioactivity and Product Development of Codonopsis pilosula Polysaccharide[J]. Science and Technology of Food Industry, 2022, 43(20): 464-470. DOI: 10.13386/j.issn1002-0306.2021100038
    [3]ZHOU Tiantian, ZHANG Hong, YUAN Wenpeng. Research Progress on Extraction, Purification and Biological Activity of Marine Peptides[J]. Science and Technology of Food Industry, 2022, 43(19): 419-426. DOI: 10.13386/j.issn1002-0306.2021090116
    [4]WANG Jialuan, ZHAO Fengyi, ZHANG Chunhong, WU Wenlong. Research Progress of Extraction, Purification and Bioactivity of Ellagic Acid[J]. Science and Technology of Food Industry, 2022, 43(13): 416-424. DOI: 10.13386/j.issn1002-0306.2021060276
    [5]YANG Maohui, ZHOU Xin, QIAO Zhengwen, ZHAO Chao, GONG Xiaojian, DENG Qingfang, CHEN Huaguo. Recent Advances in Polygonatum Polysaccharides: Extraction, Isolation, Purification and Bioactivities[J]. Science and Technology of Food Industry, 2022, 43(12): 407-416. DOI: 10.13386/j.issn1002-0306.2021060142
    [6]XU Wensi, ZHANG Mengyuan, LI Baihua, YANG Qifu, WEI Naqiang, YANG Pinhong, ZHOU Shunxiang. Research Progress of Protein Polypeptides Extraction and Bioactivities from Shrimp Processing By-products[J]. Science and Technology of Food Industry, 2021, 42(17): 432-438. DOI: 10.13386/j.issn1002-0306.2020080301
    [7]JI Xiao-long, YIN Ming-song, HOU Chun-yan, LIU Yan-qi. Recent Advances in Jujube(Zizyphus jujuba Mill.)Polysaccharides: Extraction,Isolation and Purification and Bioactivities[J]. Science and Technology of Food Industry, 2020, 41(23): 346-353,358. DOI: 10.13386/j.issn1002-0306.2020030038
    [8]LIU Chun-you, YIN Chao-min, HUANG Yong-chun, GENG Fang, YANG Feng, HUANG Cheng-du, ZHANG Kun-ming. Progress in extraction,separation and purification,structural characteristics and bioactivities of polysaccharides of passiflora edulis peel[J]. Science and Technology of Food Industry, 2018, 39(8): 335-340,351. DOI: 10.13386/j.issn1002-0306.2018.08.060
    [9]LIU Cai-fen, HAN Hao, JIN Wen-gang, LI Xin-sheng, JIANG Hai, CHEN Xiao-ling, LI Wen. Research status and prospects of anthocyanin compounds bioactivity[J]. Science and Technology of Food Industry, 2017, (16): 335-340. DOI: 10.13386/j.issn1002-0306.2017.16.063
    [10]ZHU Cai-ping, ZHAI Xi-chuan, ZHANG Xiao, LI Lin-qiang, ZHANG Qing-an, WU Xiao-xia, DENG Hong. Research progress in extraction,separation,purification and bioactivity of Pleurotus ostreatus polysaccharides[J]. Science and Technology of Food Industry, 2015, (06): 359-364. DOI: 10.13386/j.issn1002-0306.2015.06.070
  • Cited by

    Periodical cited type(11)

    1. 刘继艳,王冰,李超宇,于淼. 五味子非药用部位活性成分和药理作用研究进展. 中草药. 2024(09): 3179-3189 .
    2. 吴溪,许杨,吴德玲,赵想,汪孰敏,高家荣. 基于UPLC-Q-TRAP-MS分析养心安神药对酸枣仁-五味子配伍煎煮前后10个指标成分含量变化. 中华中医药学刊. 2024(05): 190-195 .
    3. 刘妍妍,毕秀霞,董林林,成亚亚,贾小杰,李洪超. 北五味子提取物基于TLR/NF-κB信号通路对老年失眠大鼠的干预效果. 中国老年学杂志. 2024(18): 4524-4528 .
    4. 刘伟,张昊,李新殿,李慧萍,李伟. 超高压提取法对五味子果实及藤茎中木脂素类成分含量的影响. 特产研究. 2024(06): 87-95 .
    5. 康心茹,刘立科,傅容湛. 百合水提物和乙醇提取物对小鼠睡眠的影响. 食品研究与开发. 2023(06): 51-56 .
    6. 万祥旭,黄笑然,周宝丽,王宇航,金志民. 五味子药用成分在鼠类生理生化及病理中的应用研究进展. 中南农业科技. 2023(03): 240-243 .
    7. 付路静,王海洋,黄九林,梁如,梅皓. 南五味子嫩芽香辣酱的研制. 食品工业. 2023(07): 56-61 .
    8. 郭文霞,郭佳琦,傅容湛. 绞股蓝珍珠粉胶囊对小鼠睡眠的改善作用. 中国兽医杂志. 2023(10): 144-149 .
    9. 张雪妍,朱翠玲,闫海峰,孔维远,李滟郦. 基于小陷胸汤在心血管疾病中的相关研究特点论精简经典名方研究现状. 上海中医药杂志. 2023(12): 27-31 .
    10. 董培良,刘柯萌,曹庆宇,陈元金,许天恩,韩华. 五藤片的成型工艺研究. 中医药导报. 2022(07): 59-63 .
    11. 李贺,陈红旭,牛胜男,陈建光. 五味子藤茎多糖小鼠经口最大耐受量的测定. 北华大学学报(自然科学版). 2022(06): 763-767 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (162) PDF downloads (16) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return