ZHENG Hongli, WANG Xiao, DU Mengxuan, et al. Effect of Chlorophyll on the Proliferation of Intestinal Bacteria Based on Flow Cytometry Method[J]. Science and Technology of Food Industry, 2022, 43(22): 296−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120296.
Citation: ZHENG Hongli, WANG Xiao, DU Mengxuan, et al. Effect of Chlorophyll on the Proliferation of Intestinal Bacteria Based on Flow Cytometry Method[J]. Science and Technology of Food Industry, 2022, 43(22): 296−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120296.

Effect of Chlorophyll on the Proliferation of Intestinal Bacteria Based on Flow Cytometry Method

More Information
  • Received Date: December 27, 2021
  • Available Online: September 19, 2022
  • In order to explore the effect of chlorophyll on the proliferation of specific intestinal bacteria at the bacterial species level, this study firstly explored the feasibility of flow cytometry (FCM) to count intestinal bacteria and compared it with the dilution plating method. Then, the effects of chlorophyll on the proliferation of Flavonifractor plautii, Bacteroides vulgatus, Bifidobacterium pseudolongum and Lactobacillus murinus were investigated by FCM. The results showed that FCM could detect live bacteria and dead bacteria at the same time. There was a good correlation between the count of live bacteria by FCM and the number of live bacteria determined by the dilution coating method (r>0.8, P<0.001). However, detection efficiency of FCM was higher, and the detection results were closer to the real value. 100 µg/mL chlorophyll highly significantly promoted the proliferation of Flavonifractor plautii (P<0.01), while 300 and 500 µg/mL chlorophyll extremely significantly inhibited the proliferation of Flavonifractor plautii (P<0.001). 100 µg/mL chlorophyll extremely significantly promoted the proliferation of Bacteroides vulgatus (P<0.001), while 300 and 500 µg/mL chlorophyll extremely significantly inhibited the proliferation of Bacteroides vulgatus (P<0.001). Chlorophyll could extremely significantly inhibit the proliferation of Bifidobacterium pseudolongum (P<0.001), and the higher the concentration was, the stronger the inhibitory effect was. Chlorophyll could extremely significantly promote the proliferation of Lactobacillus murinus (P<0.001), and the higher the concentration was, the stronger the promoting effect was. This study would provide important theoretical data for elucidating the effect of dietary chlorophyll on the growth of gut microbiota.
  • [1]
    LANFER-MARQUEZ U M, BARROS R M, SINNECKER P. Antioxidant activity of chlorophylls and their derivatives[J]. Food Research International,2005,38(9):885−891.
    [2]
    LEE D, NISHIZAWA M, SHIMIZU Y, et al. Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a[J]. Food Research International,2017,100(1):514−521.
    [3]
    ZHANG X H, ZHANG L J, SUN J J, et al. Photodynamic efficiency of a chlorophyll-a derivative in vitro and in vivo[J]. Biomedicine & Pharmacotherapy,2016,81:265−272.
    [4]
    ZHONG S Q, BIRD A, KOPEC R E. The metabolism and potential bioactivity of chlorophyll and metallo-chlorophyll derivatives in the gastrointestinal tract[J]. Molecular Nutrition & Food Research,2021,65(7):2000761.
    [5]
    LI Y Y, CUI Y U, HU X S, et al. Chlorophyll supplementation in early life prevents diet-induced obesity and modulates gut microbiota in mice[J]. Molecular Nutrition & Food Research,2019,63(21):1−13.
    [6]
    LI Y Y, CUI Y, LU F, et al. Beneficial effects of a chlorophyll-rich spinach extract supplementation on prevention of obesity and modulation of gut microbiota in high-fat diet-fed mice[J]. Journal of Functional Foods,2019,60:103436. doi: 10.1016/j.jff.2019.103436
    [7]
    LIU C, ZHOU N, DU M X, et al. The mouse gut microbial biobank expands the coverage of cultured bacteria[J]. Nature Communications,2020,11(1):79. doi: 10.1038/s41467-019-13836-5
    [8]
    AMBRIZ-AVINA V, CONTRERAS-GARDUNO J A, PEDRAZA-REYES M. Applications of flow cytometry to characterize bacterial physiological responses[J]. Biomed Research International,2014:461941.
    [9]
    ALBA C, MARIN A C, MCNICHOLL A G, et al. A quick flow cytometry protocol to assess Helicobacter pylori viability[J]. Journal of Microbiological Methods,2020,177:106043. doi: 10.1016/j.mimet.2020.106043
    [10]
    SAWADA T, KATAYAMA M, TAKATANI S, et al. Early detection of drug-resistant Streptococcus pneumoniae and Haemophilus influenzae by quantitative flow cytometry[J]. Scientific Reports,2021,11(1):2873. doi: 10.1038/s41598-021-82186-4
    [11]
    HE S B, HONG X Y, HUANG T X, et al. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry[J]. Methods and Applications in Fluorescence,2017,5(2):1−9.
    [12]
    BARTLE L, MITCHELL J G, PATERSON J S. Evaluating the cytometric detection and enumeration of the wine bacterium, Oenococcus oeni[J]. Cytometry Part A,2021,99(4):399−406. doi: 10.1002/cyto.a.24258
    [13]
    TRCEK J, LIPOGLAVSEK L, AVGUSTIN G. 16S rRNA in situ hybridization followed by flow cytometry for rapid identification of acetic acid bacteria involved in submerged industrial vinegar production[J]. Food Technology and Biotechnology,2016,54(1):108−112.
    [14]
    LI Y Y, LU F, WANG X, et al. Biological transformation of chlorophyll-rich spinach (Spinacia oleracea L.) extracts under in vitro gastrointestinal digestion and colonic fermentation[J]. Food Research International,2021,139:109941. doi: 10.1016/j.foodres.2020.109941
    [15]
    DUQUENOY A, BELLAIS S, GASC C, et al. Assessment of gram- and viability-staining methods for quantifying bacterial community dynamics using flow cytometry[J]. Frontiers in Microbiology,2020,11:1469. doi: 10.3389/fmicb.2020.01469
    [16]
    ROUSSEL C, GALIA W, LERICHE F, et al. Comparison of conventional plating, PMA-qPCR, and flow cytometry for the determination of viable enterotoxigenic Escherichia coli along a gastrointestinal in vitro model[J]. Applied Microbiology and Biotechnology,2018,102(22):9793−9802. doi: 10.1007/s00253-018-9380-z
    [17]
    MAJEED M, MAJEED S, NAGABHUSHANAM K, et al. Evaluation of the stability of Bacillus coagulans MTCC 5856 during processing and storage of functional foods[J]. International Journal of Food Science and Technology,2016,51(4):894−901. doi: 10.1111/ijfs.13044
    [18]
    LIU C, DU M X, ABUDUAINI R, et al. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank[J]. Microbiome,2021,9(1):119. doi: 10.1186/s40168-021-01064-3
    [19]
    GAO Y, YU H J, WEN B. The use of fluorescent techniques in combination with flow cytometry for fast counting of Bifidobacterium longum ATCC BAA-2753 in BIFICO capsule[J]. Food Science and Biotechnology,2018,27(5):1405−1410. doi: 10.1007/s10068-018-0388-z
    [20]
    张兰, 徐红, 翁文川, 等. 流式细胞技术检测酸性饮料中菌落总数的研究[J]. 食品工业科技,2018,39(4):235−239. [ZHANG L, XU H, WENG W C, et al. Study on total plate count detection in acid beverage by flow cytometry[J]. Science and Technology of Food Industry,2018,39(4):235−239. doi: 10.13386/j.issn1002-0306.2018.04.043
    [21]
    李可欣, 吴蔓莉, 高欢, 等. 基于流式细胞术的活性多环芳烃降解菌检测技术[J]. 分析化学,2021,49(8):1357−1365. [LI K X, WU M L, GAO H, et al. Detection technology of active polycyclic aromatic hydrocarbon degrading bacteria based on flow cytometry[J]. Chinese Journal of Analytical Chemistry,2021,49(8):1357−1365. doi: 10.19756/j.issn.0253-3820.201598
    [22]
    EMERSON J B, ADAMS R I, ROMAN C M B, et al. Schrodinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems[J]. Microbiome,2017,5:86. doi: 10.1186/s40168-017-0285-3
    [23]
    LI L, MENDIS N, TRIGUI H, et al. The importance of the viable but non-culturable state in human bacterial pathogens[J]. Frontiers in Microbiology,2014,5:258.
    [24]
    ZHAO X H, ZHONG J L, WEI C J, et al. Current perspectives on viable but non-culturable state in foodborne pathogens[J]. Frontiers in Microbiology,2017,8:580.
    [25]
    OU F, MCGOVERIN C, SWIFT S, et al. Absolute bacterial cell enumeration using flow cytometry[J]. Journal of Applied Microbiology,2017,123(2):464−477. doi: 10.1111/jam.13508
    [26]
    VAN N S, BUYSSCHAERT B, DE R K, et al. Flow cytometry for immediate follow-up of drinking water networks after maintenance[J]. Water Research,2017,111:66−73. doi: 10.1016/j.watres.2016.12.040
    [27]
    OGITA T, YAMAMOTO Y, MIKAMI A, et al. Oral administration of Flavonifractor plautii strongly suppresses th2 immune responses in mice[J]. Frontiers in Immunology,2020,11:379. doi: 10.3389/fimmu.2020.00379
    [28]
    MIKAMI A, OGITA T, FU N, et al. Oral administration of Flavonifractor plautii attenuates inflammatory responses in obese adipose tissue[J]. Molecular Biology Reports,2020,47(9):6717−6725. doi: 10.1007/s11033-020-05727-6
    [29]
    MIKAMI A, OGITA T, FU N, et al. Oral administration of Flavonifractor plautii, a bacteria increased with green tea consumption, promotes recovery from acute colitis in mice via suppression of IL-17[J]. Frontiers in Nutrition,2021,7:610946. doi: 10.3389/fnut.2020.610946
    [30]
    LIU P, DENG Y, WANG M, et al. Sesamin modulation of intestinal microflora in rats on high-fat diet[J]. Current Topics in Nutraceutical Research,2020,19(3):312−316. doi: 10.37290/ctnr2641-452X.19:312-316
    [31]
    KAMIJO M, KANAZAWA T, FUNAKI M, et al. Effects of rosa rugosa petals on intestinal bacteria[J]. Bioscience Biotechnology and Biochemistry,2008,72(3):773−777. doi: 10.1271/bbb.70645
    [32]
    LI Y Y, CAO J R, ZHENG H L, et al. Transformation pathways and metabolic activity of free chlorophyll compounds from chloroplast thylakoid membrane under in vitro gastrointestinal digestion and colonic fermentation in early life[J]. Food Bioscience,2021,42:101196. doi: 10.1016/j.fbio.2021.101196
    [33]
    LINDELL A E, ZIMMERMANN-KOGADEEVA M, PATIL K R, et al. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota[J]. Nature Reviews Microbiology, 2022, 20(7): 431−443.
    [34]
    GWIAZDOWSKA D, JUS K, JASNOWSKA-MALECKA J, et al. The impact of polyphenols on Bifidobacterium growth[J]. Acta Biochimica Polonica,2015,62(4):895−901. doi: 10.18388/abp.2015_1154
    [35]
    HUANG C H, CHENG J Y, DENG M C, et al. Prebiotic effect of diosgenin, an immunoactive steroidal sapogenin of the Chinese yam[J]. Food Chemistry,2012,132(1):428−432. doi: 10.1016/j.foodchem.2011.11.016
    [36]
    HUANG C H, SHEN C C, LIANG Y C, et al. The probiotic activity of Lactobacillus murinus against food allergy[J]. Journal of Functional Foods,2016,25:231−241. doi: 10.1016/j.jff.2016.06.006
    [37]
    PAN F, ZHANG L, MIN L, et al. Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice[J]. Microbiome,2018,6(1):54. doi: 10.1186/s40168-018-0440-5
    [38]
    YUE S J, SHAN B, PENG C X, et al. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats[J]. Food & Function,2022,13(4):1921−1940.
  • Cited by

    Periodical cited type(8)

    1. 韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 . 本站查看
    2. 邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
    3. 刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 . 本站查看
    4. 马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
    5. 赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
    6. 周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
    7. 渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 . 本站查看
    8. 靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (275) PDF downloads (18) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return