Citation: | ZHENG Hongli, WANG Xiao, DU Mengxuan, et al. Effect of Chlorophyll on the Proliferation of Intestinal Bacteria Based on Flow Cytometry Method[J]. Science and Technology of Food Industry, 2022, 43(22): 296−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120296. |
[1] |
LANFER-MARQUEZ U M, BARROS R M, SINNECKER P. Antioxidant activity of chlorophylls and their derivatives[J]. Food Research International,2005,38(9):885−891.
|
[2] |
LEE D, NISHIZAWA M, SHIMIZU Y, et al. Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a[J]. Food Research International,2017,100(1):514−521.
|
[3] |
ZHANG X H, ZHANG L J, SUN J J, et al. Photodynamic efficiency of a chlorophyll-a derivative in vitro and in vivo[J]. Biomedicine & Pharmacotherapy,2016,81:265−272.
|
[4] |
ZHONG S Q, BIRD A, KOPEC R E. The metabolism and potential bioactivity of chlorophyll and metallo-chlorophyll derivatives in the gastrointestinal tract[J]. Molecular Nutrition & Food Research,2021,65(7):2000761.
|
[5] |
LI Y Y, CUI Y U, HU X S, et al. Chlorophyll supplementation in early life prevents diet-induced obesity and modulates gut microbiota in mice[J]. Molecular Nutrition & Food Research,2019,63(21):1−13.
|
[6] |
LI Y Y, CUI Y, LU F, et al. Beneficial effects of a chlorophyll-rich spinach extract supplementation on prevention of obesity and modulation of gut microbiota in high-fat diet-fed mice[J]. Journal of Functional Foods,2019,60:103436. doi: 10.1016/j.jff.2019.103436
|
[7] |
LIU C, ZHOU N, DU M X, et al. The mouse gut microbial biobank expands the coverage of cultured bacteria[J]. Nature Communications,2020,11(1):79. doi: 10.1038/s41467-019-13836-5
|
[8] |
AMBRIZ-AVINA V, CONTRERAS-GARDUNO J A, PEDRAZA-REYES M. Applications of flow cytometry to characterize bacterial physiological responses[J]. Biomed Research International,2014:461941.
|
[9] |
ALBA C, MARIN A C, MCNICHOLL A G, et al. A quick flow cytometry protocol to assess Helicobacter pylori viability[J]. Journal of Microbiological Methods,2020,177:106043. doi: 10.1016/j.mimet.2020.106043
|
[10] |
SAWADA T, KATAYAMA M, TAKATANI S, et al. Early detection of drug-resistant Streptococcus pneumoniae and Haemophilus influenzae by quantitative flow cytometry[J]. Scientific Reports,2021,11(1):2873. doi: 10.1038/s41598-021-82186-4
|
[11] |
HE S B, HONG X Y, HUANG T X, et al. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry[J]. Methods and Applications in Fluorescence,2017,5(2):1−9.
|
[12] |
BARTLE L, MITCHELL J G, PATERSON J S. Evaluating the cytometric detection and enumeration of the wine bacterium, Oenococcus oeni[J]. Cytometry Part A,2021,99(4):399−406. doi: 10.1002/cyto.a.24258
|
[13] |
TRCEK J, LIPOGLAVSEK L, AVGUSTIN G. 16S rRNA in situ hybridization followed by flow cytometry for rapid identification of acetic acid bacteria involved in submerged industrial vinegar production[J]. Food Technology and Biotechnology,2016,54(1):108−112.
|
[14] |
LI Y Y, LU F, WANG X, et al. Biological transformation of chlorophyll-rich spinach (Spinacia oleracea L.) extracts under in vitro gastrointestinal digestion and colonic fermentation[J]. Food Research International,2021,139:109941. doi: 10.1016/j.foodres.2020.109941
|
[15] |
DUQUENOY A, BELLAIS S, GASC C, et al. Assessment of gram- and viability-staining methods for quantifying bacterial community dynamics using flow cytometry[J]. Frontiers in Microbiology,2020,11:1469. doi: 10.3389/fmicb.2020.01469
|
[16] |
ROUSSEL C, GALIA W, LERICHE F, et al. Comparison of conventional plating, PMA-qPCR, and flow cytometry for the determination of viable enterotoxigenic Escherichia coli along a gastrointestinal in vitro model[J]. Applied Microbiology and Biotechnology,2018,102(22):9793−9802. doi: 10.1007/s00253-018-9380-z
|
[17] |
MAJEED M, MAJEED S, NAGABHUSHANAM K, et al. Evaluation of the stability of Bacillus coagulans MTCC 5856 during processing and storage of functional foods[J]. International Journal of Food Science and Technology,2016,51(4):894−901. doi: 10.1111/ijfs.13044
|
[18] |
LIU C, DU M X, ABUDUAINI R, et al. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank[J]. Microbiome,2021,9(1):119. doi: 10.1186/s40168-021-01064-3
|
[19] |
GAO Y, YU H J, WEN B. The use of fluorescent techniques in combination with flow cytometry for fast counting of Bifidobacterium longum ATCC BAA-2753 in BIFICO capsule[J]. Food Science and Biotechnology,2018,27(5):1405−1410. doi: 10.1007/s10068-018-0388-z
|
[20] |
张兰, 徐红, 翁文川, 等. 流式细胞技术检测酸性饮料中菌落总数的研究[J]. 食品工业科技,2018,39(4):235−239. [ZHANG L, XU H, WENG W C, et al. Study on total plate count detection in acid beverage by flow cytometry[J]. Science and Technology of Food Industry,2018,39(4):235−239. doi: 10.13386/j.issn1002-0306.2018.04.043
|
[21] |
李可欣, 吴蔓莉, 高欢, 等. 基于流式细胞术的活性多环芳烃降解菌检测技术[J]. 分析化学,2021,49(8):1357−1365. [LI K X, WU M L, GAO H, et al. Detection technology of active polycyclic aromatic hydrocarbon degrading bacteria based on flow cytometry[J]. Chinese Journal of Analytical Chemistry,2021,49(8):1357−1365. doi: 10.19756/j.issn.0253-3820.201598
|
[22] |
EMERSON J B, ADAMS R I, ROMAN C M B, et al. Schrodinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems[J]. Microbiome,2017,5:86. doi: 10.1186/s40168-017-0285-3
|
[23] |
LI L, MENDIS N, TRIGUI H, et al. The importance of the viable but non-culturable state in human bacterial pathogens[J]. Frontiers in Microbiology,2014,5:258.
|
[24] |
ZHAO X H, ZHONG J L, WEI C J, et al. Current perspectives on viable but non-culturable state in foodborne pathogens[J]. Frontiers in Microbiology,2017,8:580.
|
[25] |
OU F, MCGOVERIN C, SWIFT S, et al. Absolute bacterial cell enumeration using flow cytometry[J]. Journal of Applied Microbiology,2017,123(2):464−477. doi: 10.1111/jam.13508
|
[26] |
VAN N S, BUYSSCHAERT B, DE R K, et al. Flow cytometry for immediate follow-up of drinking water networks after maintenance[J]. Water Research,2017,111:66−73. doi: 10.1016/j.watres.2016.12.040
|
[27] |
OGITA T, YAMAMOTO Y, MIKAMI A, et al. Oral administration of Flavonifractor plautii strongly suppresses th2 immune responses in mice[J]. Frontiers in Immunology,2020,11:379. doi: 10.3389/fimmu.2020.00379
|
[28] |
MIKAMI A, OGITA T, FU N, et al. Oral administration of Flavonifractor plautii attenuates inflammatory responses in obese adipose tissue[J]. Molecular Biology Reports,2020,47(9):6717−6725. doi: 10.1007/s11033-020-05727-6
|
[29] |
MIKAMI A, OGITA T, FU N, et al. Oral administration of Flavonifractor plautii, a bacteria increased with green tea consumption, promotes recovery from acute colitis in mice via suppression of IL-17[J]. Frontiers in Nutrition,2021,7:610946. doi: 10.3389/fnut.2020.610946
|
[30] |
LIU P, DENG Y, WANG M, et al. Sesamin modulation of intestinal microflora in rats on high-fat diet[J]. Current Topics in Nutraceutical Research,2020,19(3):312−316. doi: 10.37290/ctnr2641-452X.19:312-316
|
[31] |
KAMIJO M, KANAZAWA T, FUNAKI M, et al. Effects of rosa rugosa petals on intestinal bacteria[J]. Bioscience Biotechnology and Biochemistry,2008,72(3):773−777. doi: 10.1271/bbb.70645
|
[32] |
LI Y Y, CAO J R, ZHENG H L, et al. Transformation pathways and metabolic activity of free chlorophyll compounds from chloroplast thylakoid membrane under in vitro gastrointestinal digestion and colonic fermentation in early life[J]. Food Bioscience,2021,42:101196. doi: 10.1016/j.fbio.2021.101196
|
[33] |
LINDELL A E, ZIMMERMANN-KOGADEEVA M, PATIL K R, et al. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota[J]. Nature Reviews Microbiology, 2022, 20(7): 431−443.
|
[34] |
GWIAZDOWSKA D, JUS K, JASNOWSKA-MALECKA J, et al. The impact of polyphenols on Bifidobacterium growth[J]. Acta Biochimica Polonica,2015,62(4):895−901. doi: 10.18388/abp.2015_1154
|
[35] |
HUANG C H, CHENG J Y, DENG M C, et al. Prebiotic effect of diosgenin, an immunoactive steroidal sapogenin of the Chinese yam[J]. Food Chemistry,2012,132(1):428−432. doi: 10.1016/j.foodchem.2011.11.016
|
[36] |
HUANG C H, SHEN C C, LIANG Y C, et al. The probiotic activity of Lactobacillus murinus against food allergy[J]. Journal of Functional Foods,2016,25:231−241. doi: 10.1016/j.jff.2016.06.006
|
[37] |
PAN F, ZHANG L, MIN L, et al. Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice[J]. Microbiome,2018,6(1):54. doi: 10.1186/s40168-018-0440-5
|
[38] |
YUE S J, SHAN B, PENG C X, et al. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats[J]. Food & Function,2022,13(4):1921−1940.
|
1. |
韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 .
![]() | |
2. |
邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
![]() | |
3. |
刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 .
![]() | |
4. |
马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
![]() | |
5. |
赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
![]() | |
6. |
周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
![]() | |
7. |
渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 .
![]() | |
8. |
靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .
![]() |