Citation: | WANG Jing, SONG Lianjun, MA Yan, et al. Research Progress on Composition, Extraction and Physiological Activity of Pea Polyphenols[J]. Science and Technology of Food Industry, 2022, 43(23): 418−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120245. |
[1] |
DURAZZO A, LUCARINI M, SOUTO E B, et al. Polyphenols: A concise overview on the chemistry, occurrence, and human health[J]. Phytotherapy Research,2019,33(9):2221−2243. doi: 10.1002/ptr.6419
|
[2] |
孙冬阳, 呼鑫荣, 薛文通. 豌豆功效成分及其生理活性的研究进展[J]. 食品工业科技,2019,40(2):316−320. [SUN D Y, HU X R, XUE W T. Research progress of efficacy components and physiological activity of pea[J]. Science and Technology of Food Industry,2019,40(2):316−320. doi: 10.13386/j.issn1002-0306.2019.02.055
|
[3] |
FAHIM J R, ATTIA E Z, KAMEL M S. The phenolic profile of pea (Pisum sativum): A phytochemical and pharmacological overview[J]. Phytochemistry Reviews,2019,18(1):173−198. doi: 10.1007/s11101-018-9586-9
|
[4] |
SINGH B, SINGH J P, KAUR A, et al. Phenolic composition and antioxidant potential of grain legume seeds: A review[J]. Food Research International,2017,101:1−16. doi: 10.1016/j.foodres.2017.09.026
|
[5] |
曹晓华, 沈旭斌, 程先骄, 等. HPLC双波长法测定豌豆尖中槲皮素和山奈酚的含量[J]. 食品科技,2017,42(4):270−276. [CAO X H, SHEN X B, CHENG X J, et al. Determination of quercetin and kaempferol in pea shoots by dual wave-length HPLC[J]. Food Science and Technology,2017,42(4):270−276. doi: 10.13684/j.cnki.spkj.2017.04.052
|
[6] |
WANG Q, DU Z, ZHANG H, et al. Modulation of gut microbiota by polyphenols from adlay (Coix lacryma-jobi L. var. ma-yuen Stapf.) in rats fed a high-cholesterol diet[J]. International Journal of Food Sciences and Nutrition,2015,66(7):783−789. doi: 10.3109/09637486.2015.1088941
|
[7] |
MENDEZ J, LOJO M I. Phenolic and indole constituents of edible peas[J]. Journal of Food Science,1971,36(6):871−872. doi: 10.1111/j.1365-2621.1971.tb15548.x
|
[8] |
XU B J, YUAN S H, CHANG S K C. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes[J]. Journal of Food Science,2007,72(2):167−177. doi: 10.1111/j.1750-3841.2006.00261.x
|
[9] |
ZHAO T Y, SU W J, QIN Y, et al. Phenotypic diversity of pea (Pisum sativum L.) varieties and the polyphenols, flavonoids, and antioxidant activity of their seeds[J]. Ciência Rural,2020,50(5):1−16.
|
[10] |
STANISAVLJEVIĆ N S, ILIĆ M D, JOVANOVIĆ Ž S, et al. Identification of seed coat phenolic compounds from differently colored pea varieties and characterization of their antioxidant activity[J]. Archives of Biological Sciences,2015,67(3):829−840. doi: 10.2298/ABS141204042S
|
[11] |
STANISAVLJEVIĆ N S, ILIĆ M D, MATIĆ I Z, et al. Identification of phenolic compounds from seed coats of differently colored European varieties of pea (Pisum sativum L.) and characterization of their antioxidant andin vitro anticancer activities[J]. Nutrition and Cancer,2016,68(6):988−1000. doi: 10.1080/01635581.2016.1190019
|
[12] |
TROSZYNSKA A, CISKA E. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity[J]. Czech Journal of Food Sciences,2002,20(1):15−22.
|
[13] |
ELESSAWY F M, BAZGHALEH N, VANDENBERG A, et al. Polyphenol profile comparisons of seed coats of five pulse crops using a semi-quantitative liquid chromatography-mass spectrometric method[J]. Phytochemical Analysis,2020,31(4):458−471. doi: 10.1002/pca.2909
|
[14] |
HRAZDINA G, MARX G A, HOCH H C. Distribution of secondary plant metabolites and their biosynthetic enzymes in pea (Pisum sativum L.) leaves: Anthocyanins and flavonol glycosides[J]. Plant Physiology,1982,70(3):745−748. doi: 10.1104/pp.70.3.745
|
[15] |
OOMAH B D, CASPAR F, MALCOLMSON L J, et al. Phenolics and antioxidant activity of lentil and pea hulls[J]. Food Research International,2011,44(1):436−441. doi: 10.1016/j.foodres.2010.09.027
|
[16] |
NIKOLOPOULOU D, GRIGORAKIS K, STASINI M, et al. Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year[J]. Food Chemistry,2007,103(3):847−852. doi: 10.1016/j.foodchem.2006.09.035
|
[17] |
NEUGART S, ROHN S, SCHREINER M. Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile[J]. Food Research International,2015,76:114−121. doi: 10.1016/j.foodres.2015.02.021
|
[18] |
DUEÑAS M, ESTRELLA I, HERNÁNDEZ T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.)[J]. European Food Research and Technology,2004,219(2):116−123.
|
[19] |
KALOGEROPOULOS N, CHIOU A, IOANNOU M, et al. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries[J]. Food Chemistry,2010,121(3):682−690. doi: 10.1016/j.foodchem.2010.01.005
|
[20] |
DUAN C X, ZHU Z D, REN G X, et al. Resistance of faba bean and pea germplasm to callosobruchus chinensis (coleoptera: Bruchidae) and its relationship with quality components[J]. Journal of Economic Entomology,2014,107(5):1992−1999. doi: 10.1603/EC14113
|
[21] |
VOGT T. Phenylpropanoid biosynthesis[J]. Molecular Plant,2010,3(1):2−20. doi: 10.1093/mp/ssp106
|
[22] |
赵天瑶, 苌淑敏, 李少华, 等. 豌豆萌发过程中生长特性、酚类含量及抗氧化性变化[J]. 中国农业大学学报,2019,24(12):1−9. [ZHAO T Y, CHANG S M, LI S H, et al. Dynamic changes in the greenth characteristics, phenolic content and antioxidant activity of pea during germination[J]. Journal of China Agricultural University,2019,24(12):1−9. doi: 10.11841/j.issn.1007-4333.2019.12.01
|
[23] |
XU M, JIN Z, OHM J B, et al. Effect of germination time on antioxidative activity and composition of yellow pea soluble free and polar soluble bound phenolic compounds[J]. Food & Function,2019,10(10):6840−6850.
|
[24] |
CHOUDHARY K K, AGRAWAL S B. Ultraviolet-B induced changes in morphological, physiological and biochemical parameters of two cultivars of pea (Pisum sativum L.)[J]. Ecotoxicology and Environmental Safety,2014,100:178−187. doi: 10.1016/j.ecoenv.2013.10.032
|
[25] |
SIIPOLA S M, KOTILAINEN T, SIPARI N, et al. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation[J]. Plant, Cell & Environment,2015,38(5):941−952.
|
[26] |
WU M C, HOU C Y, JIANG C M, et al. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings[J]. Food Chemistry,2007,101(4):1753−1758. doi: 10.1016/j.foodchem.2006.02.010
|
[27] |
LIU H K, CHEN Y Y, HU T T, et al. The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts[J]. Journal of Functional Foods,2016,25:459−465. doi: 10.1016/j.jff.2016.06.028
|
[28] |
KAUR D, GREWAL S K, KAUR J, et al. Free radical scavenging activities can mitigate the effect of water stress in chickpea[J]. Crop & Pasture Science,2017,68(6):544−554.
|
[29] |
OBEROI H K, GUPTA A K, KAUR S, et al. Stage specific upregulation of antioxidant defence system in leaves for regulating drought tolerance in chickpea[J]. Journal of Applied and Natural Science,2014,6(2):326−337. doi: 10.31018/jans.v6i2.423
|
[30] |
JUZOŃ K, SKRZYPEK E, CZYCZŁO MYSZA I, et al. Effect of soil drought on the yield structure, protein and phenolics content in Pisum sativum and Lupinus luteus[J]. Acta Agronomica Hungarica,2013,61(4):267−278. doi: 10.1556/AAgr.61.2013.4.3
|
[31] |
伊风艳, 孙海莲, 晔薷罕, 等. 温度和干旱胁迫对乌拉特肋脉野豌豆种子萌发的影响[J]. 内蒙古农业大学学报(自然科学版),2019,40(5):43−49. [YI F Y, SUN H L, YE R H, et al. Effects of temperature and drought stress on seed germination of Vicia costata ledeb. cv. wulate[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2019,40(5):43−49. doi: 10.16853/j.cnki.1009-3575.2019.05.008
|
[32] |
KUMARI, VERMA, SC, et al. Impact of elevated CO2 and temperature on quality and biochemical parameters of pea (Pisum sativum)[J]. Indian J Agr Sci,2016,8(4):1941−1946.
|
[33] |
RUDIKOVSKAYA E G, FEDOROVA G A, DUDAREVA L V, et al. Effect of growth temperature on the composition of phenols in pea roots[J]. Russian Journal of Plant Physiology,2008,55(5):712−715. doi: 10.1134/S1021443708050178
|
[34] |
包敖民. NO在机械伤害诱导豌豆芽苗防御反应形成信号通道中的作用[D]. 呼和浩特: 内蒙古农业大学, 2015: 11−27.
BAO A M. Role of NO in signal pathway of defense response induced by mechanical wounding in pea seedlings[D]. Hohhot: Inner Mongolia Agricultural University, 2015: 11−27.
|
[35] |
刘海燕. 不同浓度的微量元素对豌豆芽苗菜的生长和营养品质的影响[D]. 合肥: 安徽农业大学, 2015: 12−28.
LIU H Y. Effects of different concentrations of trace elements on growth and quality of pea sprouts[D]. Hefei: Anhui Agricultural University, 2015: 12−28.
|
[36] |
JAIN A, SINGH A, CHAUDHARY A, et al. Modulation of nutritional and antioxidant potential of seeds and pericarp of pea pods treated with microbial consortium[J]. Food Research International,2014,64:275−282. doi: 10.1016/j.foodres.2014.06.033
|
[37] |
XU B J, CHANG S. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents[J]. Journal of Food Science,2010,72(2):159−166.
|
[38] |
NITHIYANANTHAM S, SELVAKUMAR S, SIDDHURAJU P. Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed legumes, Cicer arietinum L. and Pisum sativum L.[J]. Journal of Food Composition and Analysis,2012,27(1):52−60. doi: 10.1016/j.jfca.2012.04.003
|
[39] |
RYBIŃSKI W, KARAMAĆ M, SULEWSKA K, et al. Antioxidant potential of grass pea seeds from European countries[J]. Foods,2018,7(9):142. doi: 10.3390/foods7090142
|
[40] |
LÓPEZ-MIRANDA S, SERRANO-MARTÍNEZ A, HERNÁNDEZ-SÁNCHEZ P, et al. Use of cyclodextrins to recover catechin and epicatechin from red grape pomace[J]. Food Chemistry,2016,203:379−385. doi: 10.1016/j.foodchem.2016.02.100
|
[41] |
KHODDAMI A, WILKES M, ROBERTS T. Techniques for analysis of plant phenolic compounds[J]. Molecules,2013,18(2):2328−2375. doi: 10.3390/molecules18022328
|
[42] |
HAN H, BYUNGKGEE BAIK. Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing[J]. International Journal of Food Science & Technology,2010,43(11):1971−1978.
|
[43] |
AGBOOLA S O, MOFOLASAYO O A, WATTS B M, et al. Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols[J]. Food Research International,2010,43(2):582−588. doi: 10.1016/j.foodres.2009.07.013
|
[44] |
RUNGRUANGMAITREE R, JIRAUNGKOORSKUL W. Pea, Pisum sativum, and its anticancer activity[J]. Pharmacognosy Reviews,2017,11(21):39−42. doi: 10.4103/phrev.phrev_57_16
|
[45] |
SASSI A, BZÉOUICH I M, MUSTAPHA N, et al. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response[J]. European Journal of Pharmacology,2017,812(5):91−96.
|
[46] |
LÍNZEMBOLD I, CZETT D, BÖDDI K, et al. Study on the synthesis, antioxidant properties, and self-assembly of carotenoid-flavonoid conjugates[J]. Molecules,2020,25(3):636. doi: 10.3390/molecules25030636
|
[47] |
RAVISHANKAR D, SALAMAH M, ATTINA A, et al. Ruthenium-conjugated chrysin analogues modulate platelet activity, thrombus formation and haemostasis with enhanced efficacy[J]. Scientific Reports,2017,7(1):1−16.
|
[48] |
WU W, YANG B, QIAO Y, et al. Kaempferol protects mitochondria and alleviates damages against endotheliotoxicity induced by doxorubicin[J]. Biomedicine & Pharmacotherapy,2020,126:3843−3851.
|
[49] |
CHO H J, PARK J H Y. Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells[J]. Journal of Cancer Prevention,2013,18(3):257−263. doi: 10.15430/JCP.2013.18.3.257
|
[50] |
CHAVES W F, PINHEIRO I L, LUANA OLEGÁRIO DA SILVA, et al. Neonatal administration of kaempferol does not alter satiety but increases somatic growth and reduces adiposity in offspring of high-fat diet dams[J]. Life Sciences,2020,259(15):118224.
|
[51] |
BALLMANN C, DENNEY T S, BEYERS R J, et al. Lifelong quercetin enrichment and cardioprotection in Mdx/Utrn+/-ice[J]. Am J Physiol Heart Circ Physiol,2017,312(1):128−140. doi: 10.1152/ajpheart.00552.2016
|
[52] |
HOUGHTON M J, KERIMI A, TUMOVA S, et al. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells[J]. Free Radical Biology and Medicine,2018,129:296−309. doi: 10.1016/j.freeradbiomed.2018.09.037
|
[53] |
DOBRIKOVA A G, APOSTOLOVA E L. Damage and protection of the photosynthetic apparatus from UV-B radiation. II. Effect of quercetin at different pH[J]. Journal of Plant Physiology,2015,184(20):98−105.
|
[54] |
OJHA D, PATIL K N. p-Coumaric acid inhibits the listeria monocytogenes RecA protein functions and SOS response: An antimicrobial target[J]. Biochemical and Biophysical Research Communications,2019,517(4):655−661. doi: 10.1016/j.bbrc.2019.07.093
|
[55] |
HUANG X, YOU Y, XI Y, et al. p-Coumaric acid attenuates IL-1β-induced inflammatory responses and cellular senescence in rat chondrocytes[J]. Inflammation,2019,43(2):619−628.
|
[56] |
SABITHA R, NISHI K, GUNASEKARAN V P, et al. p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models[J]. Chemico-Biological Interactions,2020,321:109044. doi: 10.1016/j.cbi.2020.109044
|
[57] |
CHERNG Y G, TSAI C C, CHUNG H H, et al. Antihyperglycemic action of sinapic acid in diabetic rats[J]. Journal of Agricultural and Food Chemistry,2013,61(49):12053−12059. doi: 10.1021/jf403092b
|
[58] |
BAE I S, KIM S H. Sinapic acid promotes browning of 3T3-L1 adipocytes via p38 MAPK/CREB pathway[J]. Biomed Research International,2020,2020(4):1−8.
|
[59] |
SILAMBARASAN T, MANIVANNAN J, RAJA B, et al. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in L-NAME hypertensive rats by sinapic acid—Role of HMG-CoA reductase[J]. European Journal of Pharmacology,2016,777(15):113−123.
|
[60] |
SINGH B, SINGH J P, SHEVKANI K, et al. Bioactive constituents in pulses and their health benefits[J]. Journal of Food Science and Technology,2017,54(4):858−870. doi: 10.1007/s13197-016-2391-9
|
[61] |
PARK H J, CHO J H, HONG S H, et al. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells[J]. Journal of Natural Medicines,2018,72(1):127−135. doi: 10.1007/s11418-017-1120-7
|
[62] |
JUNG J S, YAN J J, LI H M, et al. Protective effects of a dimeric derivative of ferulic acid in animal models of Alzheimer's disease[J]. European Journal of Pharmacology,2016,782(5):30−34.
|
[63] |
SMÝKAL P, VERNOUD V, BLAIR M W, et al. The role of the testa during development and in establishment of dormancy of the legume seed[J]. Frontiers in Plant Science,2014,5(351):75678.
|
[64] |
CESAR P H S, TRENTO M V C, KONIG I F M, et al. Catechin and epicatechin as an adjuvant in the therapy of hemostasis disorders induced by snake venoms[J]. Journal of Biochemical and Molecular Toxicology,2020,34(12):1−9.
|
[65] |
MILENKOVIC D, DECLERCK K, GUTTMAN Y, et al. (-)-Epicatechins promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation[J]. Biochemical Pharmacology,2019,173:1−16. doi: 10.1016/j.jpba.2019.05.002
|
[66] |
TAKANASHI K, SUDA M, MATSUMOTO K, et al. Epicatechin oligomers longer than trimers have anti-cancer activities, but not the catechin counterparts[J]. Scientific Reports,2017,7(1):7791.
|
[67] |
DONG J, ZHOU Y, LU Y, et al. Effect of tea polyphenols on the oxidation and color stability of porcine hemoglobin[J]. Journal of Food Science,2019,84(8):2086−2090. doi: 10.1111/1750-3841.14703
|
[68] |
JIA S, HUANG Z, LEI Y, et al. Application of Illumina-MiSeq high throughput sequencing and culture-dependent techniques for the identification of microbiota of silver carp (Hypophthalmichthys molitrix) treated by tea polyphenols[J]. Food Microbiology,2018,76:52−61. doi: 10.1016/j.fm.2018.04.010
|
[69] |
NIE X, WANG L, WANG Q, et al. Effect of a sodium alginate coating infused with tea polyphenols on the quality of fresh japanese sea bass (Lateolabrax japonicas) fillets[J]. Journal of Food Science,2018,83(6):1695−1700. doi: 10.1111/1750-3841.14184
|
[70] |
TURCO I, BACCHETTI T, MORRESI C, et al. Polyphenols and the glycaemic index of legume pasta[J]. Food & Function,2019,10(9):5931−5938.
|
[71] |
王伟伟, 陈琳, 张建勇, 等. 茶多酚的特性及其在食品中的应用[J]. 中国茶叶,2020,42(11):1−7. [WANG W W, CHEN L, ZHANG J Y, et al. Characteristics of tea polyphenols and its application in food[J]. China Tea,2020,42(11):1−7. doi: 10.3969/j.issn.1000-3150.2020.11.001
|
[72] |
MUNIANDY P, SHORI A B, BABA A S. Comparison of the effect of green, white and black tea on Streptococcus thermophilus andLactobacillus spp. in yogurt during refrigerated storage[J]. Journal of the Association of Arab Universities for Basic and Applied Sciences,2015,9(4):240−250.
|
[73] |
刘开华, 邢淑婕. 含茶多酚的壳聚糖涂膜对青椒的保鲜效果研究[J]. 中国食品添加剂,2013(2):224−228. [LIU K H, XING S J. Study of tea polyphenol incorporated chitosan coating on green pepper preservation[J]. China Food Additives,2013(2):224−228. doi: 10.3969/j.issn.1006-2513.2013.02.029
|
[74] |
张宇航, 王荣荣, 邢淑婕. 茶多酚在果蔬贮藏保鲜中的应用研究进展[J]. 食品研究与开发,2016,37(11):210−214. [ZHANG Y H, WANG R R, XING S J. Research progress on application of tea polyphenol in storage and preservation of fresh fruits and vegetable[J]. Food Research and Development,2016,37(11):210−214. doi: 10.3969/j.issn.1005-6521.2016.11.050
|
[75] |
丁培峰. 纳他霉素和茶多酚在酱油中的应用研究[J]. 中国调味品,2011,36(5):21−24. [DING P F. Applied research of natamycin and tea polyphenols of soy sauce[J]. China Condiment,2011,36(5):21−24. doi: 10.3969/j.issn.1000-9973.2011.05.007
|
[1] | WEI Lei, WANG Wei, XIE Xiaoyang, ZHOU Yong, LIU Yuqing, MA Yanni, NING Erjuan, WANG Tao, LI Ningjie, JING Bingnian. Optimization of Extraction Process of Polysaccharides from Stropharia rugosoannulata in Bo'ai County by Response Surface Method and Evalation of Their Antibacterial and Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(15): 213-220. DOI: 10.13386/j.issn1002-0306.2022090174 |
[2] | LI Xiao, XIE Liang, YANG Yun-nan, GAO Yan-hua. Screening and Identification of a Lactic Acid Bacterium Strain with Antioxidant Activity from Yak Yogurt[J]. Science and Technology of Food Industry, 2020, 41(19): 121-126. DOI: 10.13386/j.issn1002-0306.2020.19.019 |
[3] | YAN Lin, CHANG Zhong-yue, YAO Yan-yan, LIU Li-yuan, DING Jian-zi, LI Chang-qing, CHANG Li-rong. Study on Antioxidant Activity of Gastropod and Viscera of Haliotis Discus Hanai[J]. Science and Technology of Food Industry, 2019, 40(19): 280-285. DOI: 10.13386/j.issn1002-0306.2019.19.048 |
[4] | LIU Chun-ju, NIU Li-ying, YU Meng, LI Da-jing, LIU Chun-quan. Study on antioxidant and antibacterial activities of essential oils from Citrus medica[J]. Science and Technology of Food Industry, 2016, (24): 132-137. DOI: 10.13386/j.issn1002-0306.2016.24.017 |
[5] | QIN Man- man, ZHANG Xue- mei, WANG Xiao- jie, FENG Zi- jun, LIU Ying, QIAN Zhong-ji, WANG Ya-ling. Screening and identification of antioxidant producing marine- source actinomycetes[J]. Science and Technology of Food Industry, 2016, (05): 167-170. DOI: 10.13386/j.issn1002-0306.2016.05.024 |
[6] | HUANG Sai-jin, YIN Ai-wu, LUO Zi-ying, ZHOU Hui-min. Study on the bacteriostasis and antioxidation of Alpinia officinarum Hance volatile oil[J]. Science and Technology of Food Industry, 2015, (19): 112-115. DOI: 10.13386/j.issn1002-0306.2015.19.014 |
[7] | HUANG Dao- mei, JIA Qiu-si, HU Lu, HUANG Feng-qin, CHEN Shu-juan, HE Li, HAN Xin- feng, LIU Shu-liang, ZHANG Qi-sheng, YAN Zheng-cai. Screening and identification of Weissella cibaria with antioxidant activity in Sichuan traditional pickles and analysis of its characteristics[J]. Science and Technology of Food Industry, 2015, (17): 121-126. DOI: 10.13386/j.issn1002-0306.2015.17.016 |
[8] | Study on extraction conditions, antioxidant and antibacterial activities of flavonoids from Elaeagnus angustifolia L.[J]. Science and Technology of Food Industry, 2013, (04): 273-276. DOI: 10.13386/j.issn1002-0306.2013.04.066 |
[9] | 茶多酚对色拉油的抗氧化作用[J]. Science and Technology of Food Industry, 1999, (06): 27-28. DOI: 10.13386/j.issn1002-0306.1999.06.069 |
[10] | 柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006 |