LI Qiufeng, CHEN Jing, ZHAO Jingyi, et al. Efficient Soluble Expression and Fermentation Conditions of D-Allulose 3-Epimerase in Escherichia coli[J]. Science and Technology of Food Industry, 2022, 43(22): 136−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120208.
Citation: LI Qiufeng, CHEN Jing, ZHAO Jingyi, et al. Efficient Soluble Expression and Fermentation Conditions of D-Allulose 3-Epimerase in Escherichia coli[J]. Science and Technology of Food Industry, 2022, 43(22): 136−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120208.

Efficient Soluble Expression and Fermentation Conditions of D-Allulose 3-Epimerase in Escherichia coli

More Information
  • Received Date: December 19, 2021
  • Available Online: September 07, 2022
  • The DAEase gene sequence derived from Clostridium bolteae ATCCBAA-613 was synthesized by codon optimization. Using pCold TF as the expression vector, the cold-shock promoter CspA induced the expression of the DAEase gene in Escherichia coli BL21(DE3) at low temperature. Then, the highly soluble recombinant Cb-DAEase was obtained and purified by Ni-chelating affinity chromatography. Results showed that, the Cb-DAEase exhibited maximum activity at pH7.0 and 55 ℃. Additionally, the Cb-DAEase showed different sensitivities to the various metal ions when Co2+ was able to significantly (P<0.05) enhance its enzyme activity. The optimum fermentation conditions were determined as follows, 7 g/L glycerol, 10 g/L yeast extract, 1% inoculation volume, 0.25 mmol/L IPTG inducer, and incubation 5 h before the induction. Eventually, the secretion level of Cb-DAEase reached (10.11±0.02) U/g, which was 7.33-fold higher than that control (1.38±0.01) U/g. Through optimizing conditions, D-allulose was produced effectively by the whole-cell biotransformation system when 120 g/L D-fructose was used as the substrate for 0.5 h, the yield reached (11.47±0.04) g/L, which was 11.14-fold higher than that control (1.03±0.02) g/L. Overall, the recombinant strain constructed based on cold-shock expression increased significantly (P<0.05) Cb-DAEase activity after fermentation optimization, which would provide a theoretical basis for the efficient preparation of D-allulose.
  • [1]
    ZHU Yueming, MEN Yan, BAI Wei, et al. Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production[J]. Biotechnology Letters,2012,34(10):1901−1906. doi: 10.1007/s10529-012-0986-4
    [2]
    WEI Hongbei, ZHANG Ruoxuan, WANG Leyi, et al. Expression of D-psicose-3-epimerase from Clostridium bolteae and Dorea sp. and whole-cell production of D-psicose in Bacillus subtilis[J]. Annals of Microbiology,2020,70(1):403−410.
    [3]
    ZHANG Wenli, LI Hao, JIANG Bo, et al. Production of D-allulose from D-glucose by Escherichia coli transformant cells co-expressing D-glucose isomerase and D-psicose 3-epimerase genes[J]. Journal of the Science of Food and Agriculture,2017,97(10):3420−3426. doi: 10.1002/jsfa.8193
    [4]
    JUNEJA A, ZHANG G, JIN Y S, et al. Bioprocessing and technoeconomic feasibility analysis of simultaneous production of D-psicose and ethanol using engineered yeast strain KAM-2GD[J]. Bioresource Technology, 2019, 275: 27−34.
    [5]
    HU Mengying, LI Mengli, JIANG Bo, et al. Bioproduction of D-allulose: Properties, applications, purification, and future perspectives[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):6012−6026. doi: 10.1111/1541-4337.12859
    [6]
    LI Can, GAO Ling, DU Kai, et al. Production of D-allulose from D-fructose using immobilized L-rhamnose isomerase and D-psicose 3-epimerase[J]. Bioprocess and Biosystems Engineering,2020,43(4):645−653. doi: 10.1007/s00449-019-02262-y
    [7]
    ZHANG Wenli, LI Hao, ZHANG Tao, et al. Characterization of a D-psicose 3-epimerase from Dorea sp. CAG317 with an acidic pH optimum and a high specific activity[J]. Journal of Molecular Catalysis B: Enzymatic,2015,120:68−74. doi: 10.1016/j.molcatb.2015.05.018
    [8]
    PARK C S, PARK C S, Shin K C, et al. Production of D-psicose from D-fructose by whole recombinant cells with high-level expression of D-psicose 3-epimerase from Agrobacterium tumefaciens[J]. Journal of Bioscience and Bioengineering,2016,121(2):186−190. doi: 10.1016/j.jbiosc.2015.06.010
    [9]
    苏鹏, 龚国利. 优化大肠杆菌表达外源蛋白的研究进展[J]. 生物技术通报,2017,33(2):16−23. [SU P, GONG G L. Research progress on optimizing the expression of exogenous proteins in Escherichia coli[J]. Biotechnology Bulletin,2017,33(2):16−23. doi: 10.13560/j.cnki.biotech.bull.1985.2017.02.003
    [10]
    马媛媛, 何健民, 康永杰. 外源性蛋白在大肠杆菌中可溶性表达的策略综述[J]. 世界科技研究与发展,2015,37(5):627−630. [MA Y Y, HE J M, KANG Y J. Reviews on strategies of enhance heterologous protein soluble expression in Escherichia coli[J]. World Sci-Tech R & D,2015,37(5):627−630. doi: 10.16507/j.issn.1006-6055.2015.05.033
    [11]
    DOMINIC E, DEB K C. Enhancement of soluble protein expression through the use of fusion tags[J]. Current Opinion in Biotechnology,2006,17(4):353−358. doi: 10.1016/j.copbio.2006.06.003
    [12]
    TSENG W C, HSU C T, CHANG H C, et al. Fusion of the peptide derived from the acidic tail of alpha-synuclein improves the thermostability and soluble expression of recombinant Agrobacterium sp. D-allulose 3-epimerase[J]. Biochemical Engineering Journal,2021,165:107828. doi: 10.1016/j.bej.2020.107828
    [13]
    CHESSHYRE J A, HIPKISS A R, et al. Low temperatures stabilize interferon α-2 against proteolysis in Methylophilus methylotrophus and Escherichia coli[J]. Applied Microbiology & Biotechnology,1989,31(2):158−162.
    [14]
    KAE H C, TAKASHI Y B, MASAHIRO I, et al. Cold shock proteins improve E. coli cell-free synthesis in terms of soluble yields of aggregation-prone proteins[J]. Biotechnology and Bioengineering,2020,117(6):1628−1639. doi: 10.1002/bit.27326
    [15]
    闫真, 聂尧, 徐岩. 重组大肠杆菌表达氧化还原酶不对称还原2-羟基苯乙酮的研究[J]. 工业微生物,2011,41(5):1−5. [YAN Z, NIE R, XU Y. Asymmetric reduction of 2-hydroxyacetophenone by recombinant Escherichia coli expressing oxidoreductase[J]. Industrial Microbiology,2011,41(5):1−5. doi: 10.3969/j.issn.1001-6678.2011.05.001
    [16]
    NENG Xiong, DONG Xie, YAN Dong, et al. Efficient biosynthesis of 1-cyanocyclohexaneacetic acid using a highly soluble nitrilase by N-terminus modification of novel peptide tags[J]. Biochemical Engineering Journal,2021,176:108207. doi: 10.1016/j.bej.2021.108207
    [17]
    QING Guoliang, MA Lichung, KHORCHID A, et al. Cold-shock induced high-yield protein production in Escherichia coli[J]. Nature Biotechnology,2004,22(7):877−882. doi: 10.1038/nbt984
    [18]
    ZHAO Jingyi, CHEN Jing, WANG Huiyi, et al. Enhanced thermostability of D-psicose 3-epimerase from Clostridium bolteae through rational design and engineering of new disulfide bridges[J]. International Journal of Molecular Sciences,2021,22(7):10007.
    [19]
    MIN J S, EUN R K, SANG J K, et al. D-allulose production from D-fructose by putative dolichol phosphate mannose synthase from Bacillus sp. with potential D-allulose 3-epimrase activity[J]. Biotechnology and Bioprocess Engineering,2021,26(6):976−984. doi: 10.1007/s12257-021-0007-3
    [20]
    YANG Lin, CHEN Tianjiao, WANG Fen, et al. Structures of β-glycosidase LXYL-P1-2 reveals the product binding state of GH3 family and a specific pocket for taxol recognition[J]. Communications Biology,2020,3(1):1−8. doi: 10.1038/s42003-019-0734-6
    [21]
    朱星星, 杨培周, 杜明睿, 等. 根癌农杆菌D-阿洛酮糖-3-差向异构酶基因克隆、结构预测及原核表达[J]. 食品科学技术学报,2019,37(3):61−66. [ZHU X X, YANG P Z, DU M R, et al. Gene cloning, structural prediction, and prokaryotic expression of Agrobacterium tumefaciens D-psicose-3-epimerase[J]. Journal of Food Science and Technology,2019,37(3):61−66. doi: 10.3969/j.issn.2095-6002.2019.03.008
    [22]
    SATO K, KANEKO T, MIURA T Y, et al. Purification and characterization of a milk-clotting enzyme from Hericium erinaceum[J]. Food Science and Technology Research,2019,25(5):735−741. doi: 10.3136/fstr.25.735
    [23]
    MAHBOOBEH N, AMIR-HASSAN Z, ROYA G, et al. Optimized protocol for soluble prokaryotic expression, purification and structural analysis of human placenta specific-1(PLAC1)[J]. Protein Expression and Purification,2017,133:139−151. doi: 10.1016/j.pep.2017.03.011
    [24]
    CHEN Xiaoyan, WANG Wen, XU Jingliang, et al. Biochemical characterization of a D-psicose 3-epimerase from Treponema primitia ZAS-1 and its application on enzymatic production of d-psicose[J]. Journal of the Science of Food and Agriculture,2016,96(1):49−56. doi: 10.1002/jsfa.7187
    [25]
    SANTA-BELL E, KOVACS N K, ALACS B, et al. Immobilization of phenylalanine ammonia-lyase via EDTA based metal chelate complexes-optimization and prospects[J]. Periodica Polytechnica-Chemical EngineerinG,2021,65(3):308−319. doi: 10.3311/PPch.17891
    [26]
    GU Lei, ZHANG Juan, LIU Baihong, et al. High-level extracellular production of D-psicose-3-epimerase with recombinant Escherichia coli by a two-stage glycerol feeding approach[J]. Bioprocess and Biosystems Engineering,2013,36(11):1767−1777. doi: 10.1007/s00449-013-0952-0
    [27]
    孙帆, 宿玲恰, 张康, 等. D-阿洛酮糖3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究[J]. 中国生物工程杂志,2018,38(7):83−88. [SUN F, SU L Q, ZHANG K, et al. D-psicose 3-epimerase gene overexpression in Bacillus subtilis and immobilization of cells[J]. China Biotechnology,2018,38(7):83−88. doi: 10.13523/j.cb.20180711
    [28]
    SU Lingqia, SUN Fan, LIU Zhanzhi, et al. Highly efficient production of Clostridium cellulolyticum H10 D-psicose 3-epimerase in Bacillus subtilis and use of these cells to produce d-psicose[J]. Microbial Cell Factories,2018,17(1):188. doi: 10.1186/s12934-018-1037-1
    [29]
    孙丽慧, 王云晓, 吕诗文, 等. 1株高产L-乳酸菌株的分离鉴定及其发酵培养基优化[J]. 食品科学,2018,39(6):135−140. [SUN L H, WANG Y X, LÜ S W, et al. Isolation and identification of a strain for high-yield production of L-lactic acid and optimization of its culture medium[J]. Food Science,2018,39(6):135−140. doi: 10.7506/spkx1002-6630-201806022
    [30]
    GUO, Fenfen, LI Xuezhi, ZHAO Jian, et al. Optimizing culture conditions by statistical approach to enhance production of pectinase from Bacillus sp. Y1[J]. BioMed Research International,2019,19:1−10.
    [31]
    ZHANG Jun, XU Chao, CHEN Xiaoyan, et al. Engineered Bacillus subtilis harbouring gene of D-tagatose 3-epimerase for the bioconversion of D-fructose into D-psicose through fermentation[J]. Enzyme and Microbial Technology,2020,136:109531. doi: 10.1016/j.enzmictec.2020.109531
  • Cited by

    Periodical cited type(7)

    1. 郭慧慧,蒋元斌,林丛发,徐绍翔,林泽宇,薛立云. 太子参脱毒苗培养、化学成分及指纹图谱研究进展. 药学研究. 2024(03): 274-281 .
    2. 张森,欧婧,豆晓霞,刘晓东,付本懂. 太子参及提取物对动物免疫调节作用研究进展. 动物医学进展. 2024(05): 97-102 .
    3. 张春雨,邢鹏,周福荣,肖逸豪,赵红兵. 中药复方养肝活血汤对酒精性肝病的临床研究. 中国民族医药杂志. 2024(09): 11-14 .
    4. 倪建成,范永飞,叶祖云. 太子参化学成分、药理作用和应用的研究进展. 中草药. 2023(06): 1963-1977 .
    5. 游绍伟,詹亚梅,王文素,何典城,蓬兴柱,王学勇. 基于“脾虚宛滞”探讨慢性萎缩性胃炎“炎癌转化”与防治思路. 中国实验方剂学杂志. 2023(21): 188-195 .
    6. 文丁苑,梁双敏,国琦,宋晓晓,葛长荣,肖智超. 榆黄菇多糖提取工艺优化及其免疫调节活性评价. 现代食品科技. 2023(10): 233-243 .
    7. 谢雄雄,孟璞岩,朱灵芝,陈宜均,龚斌,李康琴,邓绍勇. 太子参的药理活性、化学成分及繁殖栽培研究进展. 南方林业科学. 2023(05): 60-64+78 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (393) PDF downloads (31) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return