TONG Fan, HUANG Jiaqi, FAN Jianqiang, et al. Selection of Amylase Producing Strain by Atmospheric and Room Temperature Plasmas and Its Enzymological Properties[J]. Science and Technology of Food Industry, 2022, 43(20): 137−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120194.
Citation: TONG Fan, HUANG Jiaqi, FAN Jianqiang, et al. Selection of Amylase Producing Strain by Atmospheric and Room Temperature Plasmas and Its Enzymological Properties[J]. Science and Technology of Food Industry, 2022, 43(20): 137−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120194.

Selection of Amylase Producing Strain by Atmospheric and Room Temperature Plasmas and Its Enzymological Properties

More Information
  • Received Date: December 19, 2021
  • Available Online: July 26, 2022
  • Objective: The amylase-producing strain screened on the surface of Yunnan Malong C3F-2016 tobacco leaves were used as the starting strain to mutagenically select high amylase-producing strain and to study the enzymatic properties before and after mutagenesis. Methods: The amylase-producing strain were selected by ARTP technique and the amylase activity was determined by the 3,5-dinitrosalicylic acid (DNS) method before and after mutagenesis, and the effects of different temperatures, pH, metal ions and UV light on the amylase activity were investigated. Results: A mutant strain Bacillus koreensis FS-103 was selected by mutagenesis with improved enzyme activity and stable transmission, and its amylase activity reached 9050 U/mL, which was 90% higher than that of the starting strain. The optimum action temperature of amylase produced by the high-yielding mutant strain FS-103 was 60 ℃ and the optimum action pH5.5, with good stability between 40 and 50 ℃ and pH5~6, Ca2+ and Mg2+ had a promoting effect on amylase activity, and the effect of UV irradiation on amylase activity was weakened. Conclusion: This method of mutagenic selection of amylase-producing strain was feasible and lays the theoretical foundation for the research and development of enzyme preparations by this type of strain.
  • [1]
    张程慧, 冯叙桥. 响应面法优化α-淀粉酶的酶反应体系[J]. 食品工业科技,2021,42(5):206−210. [ZHANG C H, FENG X Q. Optimization of enzyme reaction system of α-amylase by response surface methodology[J]. Science and Technology of Food Industry,2021,42(5):206−210.
    [2]
    马银凤, 申培立, 王彩喆, 等. 中温α-淀粉酶的分子进化及酶学性质[J]. 食品与发酵工业,2021,47(11):14−18. [MA Y F, SHEN P L, WANG C J, et al. Molecular evolution and biochemical characterization of bacillus amyloliquefawciens α-amylase[J]. Food and Fermentation Industries,2021,47(11):14−18.
    [3]
    孙晓云, 王小生. α-淀粉酶对面包品质的影响[J]. 食品工业科技,2005(11):60−62. [SUN X Y, WANG X S. Effect of α-amylase on the quality of bread[J]. Science and Technology of Food Industry,2005(11):60−62.
    [4]
    WEIRONG Y, HUIYUAN Y. Adsorbent characteristics of porous starch[J]. Starch-Stärke,2002,54(6):260−263.
    [5]
    田莉. 真菌淀粉酶的酶学特性及其在酒类酿造中的运用研究[J]. 中国食品,2021(1):108−109. [TIAN L. Study on the enzymatic properties of fungal amylase and its use in wine brewing[J]. China Food,2021(1):108−109.
    [6]
    郑昆, 杨红. 淀粉酶的研究现状与进展[J]. 食品安全导刊,2019(18):53. [ZHENG K, YANG H. Research status and progress of amylase[J]. China Food Safety Magazine,2019(18):53. doi: 10.16043/j.cnki.cfs.2019.18.042
    [7]
    潘志芬, 李俏, 刘小丹, 等. 成熟小麦籽粒残留的α-淀粉酶活性对小麦馒头和面条品质的影响及酶活差异的分子机理研究[C]//烟台: 第十届全国小麦基因组学及分子育种大会, 2019.

    PAN Z F, LI Q, LIU X D, et al. Effect of residual α-amylase activity in mature wheat grains on the quality of wheat steamed bread and noodles and the molecular mechanism of enzyme activity difference[C]//Yantai: The 10th National Wheat Genomics and Molecular Breeding Conference, 2019.
    [8]
    李志鹏. 解淀粉芽孢杆菌的选育及产中温α-淀粉酶的研究[D]. 无锡: 江南大学, 2009

    LI Z P. Breeding of Bacillus amyloliquefaciens and its medium temperature production α-amylase[D]. Wuxi: Jiangnan University, 2009.
    [9]
    段钢. 新型工业酶制剂的进步对生物化学品工业生产过程的影响[J]. 生物工程学报,2009,25(12):1808−1818. [DUAN G. Impact of the industrial enzyme progress on the production of chemicals[J]. Chinese Journal of Biotechnology,2009,25(12):1808−1818. doi: 10.3321/j.issn:1000-3061.2009.12.008
    [10]
    HONG Z, YAO Z, XIANG L, et al. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma[J]. African Journal of Microbiology Research,2012,6(13):3154−3158.
    [11]
    ZHANG X, ZHANG X F, LI H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechology,2014,98(12):5387−5396. doi: 10.1007/s00253-014-5755-y
    [12]
    HUANG Y T, WANG L Y, ZHANG X, et al. Quantitative evaluation of DNA damage caused by atmospheric and room-temperature plasma (ARTP) and other mutagenesis methods using a rapid umu-microplate test protocol for microbial mutation breeding[J]. Chinese Journal of Chemical Engineering,2021,39(11):205−210.
    [13]
    LI X, LIU R, JING L, et al. Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments[J]. Bioresource Technology,2015,177:134−140. doi: 10.1016/j.biortech.2014.11.051
    [14]
    王兴吉, 刘文龙, 钱娟娟. ARTP诱变选育中温α-淀粉酶高产菌株及其发酵条件优化[J]. 中国酿造,2016,35(1):78−81. [WANG X J, LIU W L, QIAN J J. Screening of medium-temperature α-amylase high-yield strains by ARTP and its fermentation conditions optimization[J]. China Brewing,2016,35(1):78−81. doi: 10.11882/j.issn.0254-5071.2016.01.017
    [15]
    林杨, 布丽根·加冷别克, 孙建, 等. 乳酸菌的筛选及高产酸菌株的ARTP诱变选育[J]. 食品与发酵工业,2021,47(12):176−181. [LIN Y, BULIGEN J B, SUN J, et al. Screening of lactic acid bacteria and breeding of high acid producing strain by ARTP mutation[J]. Food and Fermentation Industries,2021,47(12):176−181.
    [16]
    WANG X, LU M, WANG S, et al. The atmospheric and room-temperature plasma (ARTP) method on the dextranase activity and structure[J]. International Journal of Biological Macromolecules,2014,70:284−291. doi: 10.1016/j.ijbiomac.2014.07.006
    [17]
    何伟, 李菁菁, 包可翔, 等. 高效表达淀粉酶Bacillus koreensis的培养基响应面优化[J]. 天然产物研究与开发,2019,31(8):1425−1433. [HE W, LI J J, BAO K X, et al. Optimization of the medium response surface for efficient expression of the amylase Bacillus koreensis[J]. Natural Products Research and Development,2019,31(8):1425−1433.
    [18]
    MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugars[J]. Analytical Chemistry,1959,31(3):426−428. doi: 10.1021/ac60147a030
    [19]
    范新蕾, 肖成建, 顾秋亚, 等. ARTP诱变选育葡萄糖氧化酶高产菌株及发酵条件优化[J]. 工业微生物,2015,45(1):15−19. [FAN X L, XIAO C J, GU Q Y, et al. ARTP mutation breeding of glucose oxidase-producing strains and optimization of fermentation conditions[J]. Industrial Microbiology,2015,45(1):15−19. doi: 10.3969/j.issn.1001-6678.2015.01.003
    [20]
    胡伟, 谭显东, 黄凡, 等. 三七渣固态发酵所产淀粉酶的酶学特性研究[J]. 中国粮油学报,2014,29(5):110−114. [HU W, TANG X D, HUANG F, et al. Enzymatic characterization of amylase produced by solid-state fermentation of Panax ginseng residue[J]. Chinese Journal of Grain and Oil,2014,29(5):110−114.
    [21]
    曹慧, 张腾月, 杨佳萌, 等. 高产淀粉酶菌株Bacillus subtilis XC2的产酶条件及酶学性质[J]. 饲料研究,2021,44(17):60−64. [CAO H, ZHANG T Y, YANG J M, et al. Enzyme-producing conditions and enzymatic properties of Bacillus subtilis XC2, a high amylase-producing strain[J]. Feed Research,2021,44(17):60−64.
    [22]
    祝金山, 吴烨飞, 陆建伟. 常压室温等离子体诱变选育核黄素高产突变株[J]. 发酵科技通讯,2020,49(1):58−62. [ZHU J S, WU Y F, LU J W. Mutagenesis of Bacillus subtilis using the at mospheric and room remperature plasma technology for improved riboflavin production[J]. Bulletin of Fermentation Science and Technology,2020,49(1):58−62.
    [23]
    杜东晓, 赵龙妹, 贾少轩, 等. 产淀粉酶菌株的筛选鉴定及酶学特性研究[J]. 饲料研究,2021,44(19):80−84. [DU D X, ZHAO L M, JIAN S X, et al. Screening, identification and enzymatic characterization of amylase-producing strains[J]. Feed Research,2021,44(19):80−84. doi: 10.13557/j.cnki.issn1002-2813.2021.19.017
    [24]
    SONG C, XU Z, JIN W, et al. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP)[J]. Bioresource Technology,2017,244(2):1400−1406.
    [25]
    JAHAN A, KHOSRO K, BIJAN R, et al. Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: Implications for thermal stability[J]. Acta crystallographica. Section F, Structural Biology and Crystallization Communications,2010,66(2):66−75.
    [26]
    TSUYOSHI S, KAZUAKI I, TADAHIRO O, et al. Ancestral sequence evolutionary trace and crystal structure analyses of alkaline alpha-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins[J]. Proteins,2007,66(3):600−610.
    [27]
    HWANG K Y, SONG H K, CHANG C, et al. Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution[J]. Molecules and Cells,1997,7(2):251−258.
    [28]
    LIMA P S S, LUCCHESE A M, ARAUJO-FILHO H G, et al. Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches[J]. Carbohydrate Polymers,2016,151:965−987. doi: 10.1016/j.carbpol.2016.06.040
  • Related Articles

    [1]ZANG Yanqing, CHUANG Yingying, WANG Changyuan, CAO Yang. Effects of White Quinoa Polysaccharide on Regulation of Glucolipid Metabolism in Type 2 Diabetic Mice[J]. Science and Technology of Food Industry, 2025, 46(4): 385-392. DOI: 10.13386/j.issn1002-0306.2024030417
    [2]WANG Yisen, XU Yifan, ZHANG Ting, WANG Haifeng, ZHANG Hua, WANG Zhenyu. Effects of Lonicera caerulea Anthocyanin Complex Liquid Preparation on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus Mice[J]. Science and Technology of Food Industry, 2024, 45(18): 308-316. DOI: 10.13386/j.issn1002-0306.2023090235
    [3]MA Nana, HAN Lijuan, YANG Yongjing, SUO Yourui, YUAN Zhenzhen, YE Ying. Effect of Berberis dasystachya Polysaccharide on Glucose and Lipid Metabolisms in STZ-induced Type I Diabetic Rats[J]. Science and Technology of Food Industry, 2024, 45(16): 348-357. DOI: 10.13386/j.issn1002-0306.2023090056
    [4]YOU Li, DANG Ya, YANG Binyan. Regulation Effects of Blueberry Anthocyanins on Glucose-Lipid Metabolism in Type 2 Diabetic Mice[J]. Science and Technology of Food Industry, 2022, 43(9): 381-388. DOI: 10.13386/j.issn1002-0306.2021090155
    [5]ZHU Mou, GONG Xiaochen, LIU Dongyang, WANG Yingwanqi, LI Lin, WANG Xiaolong, ZHANG Chunjing. Effect of Ginsenoside Rb1 on the Disorder of Glucose and Lipid Metabolism in Type 2 Diabetic Mice[J]. Science and Technology of Food Industry, 2022, 43(3): 367-373. DOI: 10.13386/j.issn1002-0306.2021050272
    [6]CHEN Zhen, LU Mintao, XU Fangyan, SHAO Linzi, REN Tingyuan, TAN Shuming. Effect of Rosa roxburghii Wine on Lipid Metabolism Disorders in High Fat-induced Obese Mice[J]. Science and Technology of Food Industry, 2022, 43(3): 358-366. DOI: 10.13386/j.issn1002-0306.2021050264
    [7]JIANG Ya-jie, HE Bo-tao, WANG Chang, XI Mao-sheng, LUO Xue-gang, CHEN Lie-huan. Studies on the Regulation Effects of Chitooligosaccharides Compound Solid Beverage on Glyeolipid Metabolism Disorder of Type 2 Diabetes Mice[J]. Science and Technology of Food Industry, 2020, 41(5): 268-273,327. DOI: 10.13386/j.issn1002-0306.2020.05.044
    [8]ZHANG Li- li, JIA Peng, ZHANG Dong- hai. Effects of aerobic exercise training and curcumin on hepatic glycogen and glucose metabolism signaling pathway of type Ⅱ diabetic rats[J]. Science and Technology of Food Industry, 2016, (07): 346-349. DOI: 10.13386/j.issn1002-0306.2016.07.058
    [9]ZHANG Ling- min, WANG Ling, JIA Ao, JIA Lu. Effects of okra extract on blood glucose and lipids in type 2 diabetes mellitus rats[J]. Science and Technology of Food Industry, 2016, (03): 355-358. DOI: 10.13386/j.issn1002-0306.2016.03.066
    [10]ZHAO Qing-bo, WU Wen-hui, ZHOU Yu, ZHU Chang-lin, CHEN Jia-jie, ZHANG Chao-yan, BAO Bin. Silkworm pupa protein-based enteral formula for improving metabolic characteristic in streptozotocin-induced Type 2 Diabetic mice[J]. Science and Technology of Food Industry, 2014, (23): 342-346. DOI: 10.13386/j.issn1002-0306.2014.23.064
  • Cited by

    Periodical cited type(13)

    1. 张莉,李桐,白茹,魏晓明,王梦倩,逄金柱,张智勇. 酵母发酵对挂面食用品质和消化特性的影响. 粮食与饲料工业. 2025(01): 57-61 .
    2. 王丹,李河,周松华,李会珍,侯天宇. 超高压预处理紫苏蛋白与大豆蛋白复配蛋白肉的工艺条件优化. 中国调味品. 2024(01): 18-24 .
    3. 张伟峰,黄泽华,王玉坤,张剑,赵萌萌,崔晚晚,安艳霞,殷贵鸿,周朋辉,赵阳. 复合菌发酵对非油炸方便面品质的影响. 食品科学. 2024(05): 210-216 .
    4. 刘安伟,吕莹果,邱学明,徐卫. 信阳手工挂面产业的现状与发展路径研究. 粮油科学与工程. 2024(02): 49-51 .
    5. 郭佳,刘翀,郑学玲. 醒发工艺对挂面品质及风味的影响. 食品与发酵工业. 2024(11): 247-255 .
    6. 杨园园,郇美丽,李桐,魏晓明,赵希雷,刘琪龙,宋燕燕,黄鑫蕾,张智勇,张毅,赵艺媛,解树珍. 不同厚度发酵挂面品质研究. 食品与发酵科技. 2024(05): 89-94+126 .
    7. 王文琪,王爱红,刘振海,陈恒均,黄玉军. 响应面优化乳酸菌发酵空心挂面制作工艺. 现代食品科技. 2024(09): 144-152 .
    8. 宁恒,马森,李力. 麦麸膳食纤维对发酵挂面品质的影响. 食品工业科技. 2023(18): 115-122 . 本站查看
    9. 徐蓓怡,王婧萱,李新宸,苏柯瑞,渠冰洁,张霞,梁赢,王金水. 酵母种类和发酵方式对冻融前后冷冻熟制空心面品质的影响. 食品研究与开发. 2023(17): 76-81 .
    10. 吴静仪,冯红,吕庆云,王学东,陈曦,蒋修军,万芳. 泡泡青蔬菜粉对面粉、面团性质影响及其挂面加工工艺优化. 食品工业科技. 2023(19): 244-251 . 本站查看
    11. 王纯,宫兆海,代福娟,操宇,刘君也,李志建. 不同种属酵母菌对发酵挂面品质的影响研究. 食品科技. 2023(10): 129-133+140 .
    12. 周慧超,刘翀,郑学玲. 添加不同粒度小麦颗粒粉对面团特性及挂面品质的影响. 食品与发酵工业. 2023(22): 86-93 .
    13. 权苗苗,许飞,陈洁,汪磊,谢亚敏,曹菲. 多菌种酵制多孔挂面的品质及风味物质分析. 河南工业大学学报(自然科学版). 2022(05): 53-60 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return