CHEN Wenlu, LIU Yanyan, DENG Kai, et al. Optimization of IgG Enrichment Process in Bovine Colostrum Whey by Microfiltration-Ultrafiltration Combined Technology[J]. Science and Technology of Food Industry, 2022, 43(21): 166−174. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120170.
Citation: CHEN Wenlu, LIU Yanyan, DENG Kai, et al. Optimization of IgG Enrichment Process in Bovine Colostrum Whey by Microfiltration-Ultrafiltration Combined Technology[J]. Science and Technology of Food Industry, 2022, 43(21): 166−174. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120170.

Optimization of IgG Enrichment Process in Bovine Colostrum Whey by Microfiltration-Ultrafiltration Combined Technology

More Information
  • Received Date: December 15, 2021
  • Available Online: August 24, 2022
  • In order to efficiently enrich IgG, reduce waste of bovine colostrum and improve the product value, the combined microfiltration-ultrafiltration technology was used to enrich IgG in bovine colostrum whey. First, the application of microfiltration technology in the sterilization of bovine colostrum whey was studied, and its operation process was optimized. Second, bovine colostrum whey after microfiltration sterilization was enriched by ultrafiltration technology, on the basis of single factor experiment, the ultrafiltration process was optimized by response surface, and the quality of enriched bovine colostrum whey was analyzed. The results showed that the best process parameters of bovine colostrum whey microfiltration were: Microfiltration pressure was 0.2 MPa, temperature was 30 ℃, the best process parameters of ultrafiltration enrichment were: Ultrafiltration pressure was 0.15 MPa, temperature was 35 ℃, concentration multiple was 6 times and dilution times was 4 times. According to these conditions, microfiltration-ultrafiltration operation of bovine colostrum whey was carried out, IgG concentration rate was 58.19%, and the membrane flux was 204.46 L/m2·h. The quality analysis of enriched bovine colostrum whey showed: The IgG content was 22760 µg/mL, IgG activity was 718.31 IU/L, protein content was 7.86%, fat content was 0.035%, and the total number of colonies was 2.4 lg CFU/ mL. This study provides a reference for further development and comprehensive utilization of IgG in bovine colostrum whey.
  • [1]
    郭瑞峰, 李雪梅, 刘少伟, 等. 牛初乳小分子多肽的分离及其抗菌作用的研究[J]. 中国乳品工业,2020,48(10):25−28. [GUO R F, LI X M, LIU S W, et al. Preparation and antibacterial function of bioactive peptides derived from bovine colostrum[J]. China Dairy Industry,2020,48(10):25−28.
    [2]
    黄上真, 蒋振兴, 邱奥, 等. 荷斯坦牛产后0~7 d乳成分变化规律研究[J]. 中国畜牧杂志,2020,56(2):157−163. [HUANG S Z, JIANG Z X, QIU A, et al. Study on milk composition change of Holstein cattle at 0~7 days postpartum[J]. Chinese Journal of Animal Science,2020,56(2):157−163.
    [3]
    邓微, 李韫同, 李墨翰, 等. 基于iTRAQ技术分析牛初乳与常乳乳清差异蛋白质组[J]. 食品科学,2021,42(2):241−246. [DENG W, LI Y T, LI M H, et al. Analysis of differential whey proteome between bovine colostrum and mature milk using isobaric tags for relative and absolute quantitation technology[J]. Food Science,2021,42(2):241−246. doi: 10.7506/spkx1002-6630-20191129-300
    [4]
    CHAE A, AITCHISON A, DAY A S, et al. Bovine colostrum demonstrates anti-inflammatory and antibacterial activity in vitro models of intestinal inflammation and infection[J]. Journal of Functional Foods,2017,28:293−298. doi: 10.1016/j.jff.2016.11.016
    [5]
    LAANSIA Q. Study on immunoglobulin IgG in bovine colostrum powder enhanced immune function[J]. Modern Food,2018(17):111−115.
    [6]
    HUUNG L H, WU C H, LIN B F, et al. Hyperimmune colostrum alleviates rheumatoid arthritis in a collagen-induced arthritis murine model[J]. Journal of Dairy Science,2018,101(5):3778−3787. doi: 10.3168/jds.2017-13572
    [7]
    张冠洲, 吴汉葵, 郑继昌, 等. 牛初乳对犊牛生长性能的影响[J]. 当代畜牧,2019(9):10−12. [ZHANG G Z, WU H K, ZHENG J C, et al. Effects of bovine colostrum on growth performance of calves[J]. Contemporary Animal Husbandry,2019(9):10−12.
    [8]
    陆东林, 刘朋龙, 徐敏, 等. 我国牛初乳资源及其安全性评价[J]. 中国乳业,2020(9):62−66. [LU D L, LIU P L, XU M, et al. Resource and safety evaluation of bovine colostrum in china[J]. China Dairy,2020(9):62−66. doi: 10.16172/j.cnki.114768.2020.09.020
    [9]
    何晓瑞, 刘朋龙, 陆东林, 等. 牛初乳的化学组成、动态变化及资源利用[J]. 新疆畜牧业,2020,35(5):8−11. [HE X R, LIU P L, LU D L, et al. Chemical composition, dynamic change and resource utilization of bovine colostrum[J]. Xinjiang Animal Husbandry,2020,35(5):8−11. doi: 10.16795/j.cnki.xjxmy.2020.5.001
    [10]
    郭爱萍. 膜分离技术在牛初乳加工中的应用[J]. 中国新技术新产品,2014(13):20−21. [GUO A P. Application of membrane separation technology in colostrum processing[J]. New Technology & New Products of China,2014(13):20−21.
    [11]
    宋晓青, 贾云虹, 凌森. 功能性乳清蛋白的分离纯化及产业化研究进展[J]. 中国奶牛,2016(5):42−45. [SONG X Q, JIA Y H, LING S. Research progress in isolation, purification and industrialization of functional whey protein[J]. China Dairy Cattle,2016(5):42−45.
    [12]
    石文奎. 基于膜分离技术乳清浓缩液的特性及乳清蛋白饮料研发[D]. 呼和浩特: 内蒙古农业大学, 2021.

    SHI W K. The characteristics of whey concentrate based on membrane separation technology and the development of whey protein beverage[D]. Hohhot: Inner Mongolia Agricultural University, 2021.
    [13]
    ZHANG M Y, LIU Y Q. Membrane separation technology and its application in food industry[J]. Modern Food,2018(2):136−138.
    [14]
    张琦, 张明科. 膜技术在乳制品工业中的应用前景[J]. 中国饲料,2020(20):8−11. [ZHANG Q, ZHANG M K. Application prospect of membrane technology in dairy industry[J]. China Feed,2020(20):8−11.
    [15]
    MELA I, AUMAITRE E, WILLIAMSON A M, et al. Charge reversal by salt-induced aggregation in aqueous lactoferrin solutions[J]. Colloids & Surfaces B Biointerfaces,2010,78(1):53−60.
    [16]
    刘飞云, 潘道东. 鲜乳陶瓷膜除菌技术研究[J]. 食品科学,2008,29(3):256−259. [LIU F Y, PAN D D. Bacteria removing of fresh milk with ceramic membrane technology[J]. Food Science,2008,29(3):256−259.
    [17]
    刘爱国, 杨桂有, 刘晓磊, 等. 牛血清中免疫球蛋白的提取研究[J]. 食品科学,2007(9):261−265. [LIU A G, YANG G Y, LIU X L, et al. Research on extraction of immunoglobulin from bovine serum[J]. Food Science,2007(9):261−265. doi: 10.3321/j.issn:1002-6630.2007.09.061
    [18]
    罗磊. 猪血G型免疫球蛋白的分离提取研究[D]. 无锡: 江南大学, 2006.

    LUO L. Studies on fractionation and extraction of immunoglobulin G from porcine blood[D]. Wuxi: Jiangnan University, 2006.
    [19]
    郭斌. 牛初乳免疫球蛋白G的规模化提取关键技术及活性保持技术的研究[D]. 合肥: 安徽农业大学, 2011.

    GUO B. Study on the large-scale extraction key technology and the activity protection method of the bovine immunoglobulin G[D]. Hefei: Anhui Agricultural University, 2011.
    [20]
    银雪. 鲜牛乳中免疫球蛋白的分离制备研究[D]. 长春: 吉林大学, 2019.

    YIN X. Isolation and preparation of immunoglobulin from fresh milk[D]. Changchun: Jilin University, 2019.
    [21]
    徐思思. 牛初乳粉制备中稳定性保护关键技术研究[D]. 长春: 吉林大学, 2016.

    XU S S. Key technologies of the stability protection in the preparation of colostrum powder[D]. Changchun: Jilin University, 2016.
    [22]
    中华人民共和国卫生部. GB/T 4789.2-2010 食品安全国家标准-食品微生物学检验-菌落总数测定[S]. 中华人民共和国国家标准, 2010.

    Ministry of Health, PRC. GB/T 4789.2-2010 National standard for food safety-Food microbiological examination-Determination of total number of bacteria [S]. National Standards of the People's Republic of China, 2010.
    [23]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009. 5-2016食品安全国家标准食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.

    The National Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB5009.5-2016 Food safety national standard-Determination of protein in food[S]. Beijing: China Standards Press, 2016.
    [24]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.6-2016食品安全国家标准食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016.

    The National Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.6-2016 Food safety national standard-Determination of fat in food[S]. Beijing: China Standard Press, 2016.
    [25]
    MOUROUZIDIS S A, KARABELAS A J. Whey protein fouling of microfiltration ceramic membranes-Pressure effects[J]. Journal of Membrane Science,2006,282(1):124−132.
    [26]
    DIAZ O, PEREIRA C D, COBOS A. Functional properties of ovine whey protein concentrates produced by membrane technology after clarification of cheese manufacture by-products[J]. Food Hydrocolloids,2004,18(4):601−610. doi: 10.1016/j.foodhyd.2003.10.003
    [27]
    RAO H G R. Mechanisms of flux decline during ultrafiltration of dairy products and influence of pH on flux rates of whey and buttermilk[J]. Desalination,2002,144(1):319−324.
    [28]
    李煜堃. 膜法制糖过程中的生物污染控制及清洗[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020.

    LI Y K. Biofouling control and cleaning in sugar-marking process by membrane technology[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Cas), 2020.
    [29]
    王超雪. 红心火龙果果皮、茎叶中多糖分离纯化及抗氧化活性研究[D]. 长春: 长春师范大学, 2020.

    WANG C X. Separation and purification and antioxidant activities of polysaccharides from peels and leaves of red dragen fruit[D]. Changchun: Changchun Normal University, 2020.
    [30]
    STEINHAUER T, SCHWING J, KRAUB S, et al. Enhancement of ultrafiltration-performance and improvement of hygienic quality during the production of whey concentrates[J]. International Dairy Journal,2015,45:8−14. doi: 10.1016/j.idairyj.2015.01.010
    [31]
    缪凤. 枸杞多糖酶提、分离纯化及抗氧化和免疫活性研究[D]. 扬州: 扬州大学, 2021.

    LIAO F. Study on enzyme extraction, isolation and purification and antioxidant and immune activities of Lycium barbarum polysaccharide[D]. Yangzhou: Yangzhou University, 2021.
    [32]
    梁杰, 赵晓旭, 汪秀妹, 等. 鲍鱼内脏蛋白的提取及水解肽的抗氧化活性研究[J]. 食品工业科技,2019,40(8):136−144. [LIANG J, ZHAO X X, WANG X M, et al. Extraction of visceral protein and antioxidant activity of hydrolytic peptides of the abalone[J]. Science and Technology of Food Industry,2019,40(8):136−144. doi: 10.13386/j.issn1002-0306.2019.08.024
    [33]
    CHAN Y T, TAN M C, CHIN N L. Application of Box-Behnken design in optimization of ultrasound effect on apple pectin as sugar replacer[J]. LWT-Food Science and Technology,2019,115(11):1−8.
    [34]
    JIANG H L, YANG J L, SHI Y P. Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology[J]. Ultrasonics-Sono-Chemistry,2017,34(1):325−331.
    [35]
    帅良, 廖玲燕, 段振华, 等. 百香果果皮多糖提取工艺优化及其抗氧化活性研究[J]. 食品工业科技,2020,41(18):150−156. [SHUAI L, LIAO L Y, DUAN Z H, et al. Optimization of extraction technology of polysaccharides from passion fruit peel and its antioxidant activity[J]. Science and Technology of Food Industry,2020,41(18):150−156. doi: 10.13386/j.issn1002-0306.2020.18.024
    [36]
    梁杰, 邓波, 刘涛, 等. 响应面法优化坛紫菜抗氧化肽酶法制备工艺[J]. 食品研究与开发,2020,41(5):1−6. [LIANG J, DENG B, LIU T, et al. Preparation of antioxidant peptides from Porphyra haitanensis via response surface optimization[J]. Food Research and Development,2020,41(5):1−6.
  • Cited by

    Periodical cited type(7)

    1. 陈雪花,陈建平,罗宝浈,李佳睿,李瑞,刘晓菲,宋兵兵,钟赛意. 硫酸软骨素纳米硒的结构表征及其对Hela细胞迁移和侵袭的影响. 食品与发酵工业. 2024(03): 73-79 .
    2. 赵猛,丁子康,李欣悦,王晓梅,胡祖广,张忠山. 低分子量坛紫菜多糖纳米硒的制备、表征及其体外抗氧化活性. 食品工业科技. 2024(23): 170-178 . 本站查看
    3. 向东,朱玉昌,周大寨,李爽. 含硒活性物质研发技术进展. 山东化工. 2023(05): 66-69+77 .
    4. 王鑫,周卓,王峙力,修伟业,罗钰,马永强. 硒化甜玉米芯多糖对非酶糖基化的抑制作用. 食品工业科技. 2023(19): 17-23 . 本站查看
    5. 徐孝楠,马浩迪,续炎,李璇,覃智,权春善,张丽影. 耐硒海洋菌株的筛选、鉴定及其产纳米硒的抗菌活性. 食品工业科技. 2023(24): 152-158 . 本站查看
    6. 陈博文,陈建平,黄文浩,钟赛意,李瑞,宋兵兵,刘晓菲,汪卓. 岩藻多糖纳米硒的制备及其抑制肿瘤细胞增殖的研究. 天然产物研究与开发. 2023(12): 2117-2126 .
    7. 向文杰,殷彩桥,黄慧,陈婷. 硒及硒化合物对食管癌作用机制研究进展. 社区医学杂志. 2022(22): 1295-1300 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (206) PDF downloads (24) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return