CHA Fengguan, LIU Ying, GAO Jun, et al. Analysis on the Effects of Grafting on Tea Plant Metabolites Based on Targeted Metabolomics[J]. Science and Technology of Food Industry, 2022, 43(21): 45−51. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120126.
Citation: CHA Fengguan, LIU Ying, GAO Jun, et al. Analysis on the Effects of Grafting on Tea Plant Metabolites Based on Targeted Metabolomics[J]. Science and Technology of Food Industry, 2022, 43(21): 45−51. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120126.

Analysis on the Effects of Grafting on Tea Plant Metabolites Based on Targeted Metabolomics

More Information
  • Received Date: December 12, 2021
  • Available Online: August 29, 2022
  • In order to explore the difference of metabolites before and after tea tree grafting, tea tree grafting was carried out by cutting and grafting method using "Peach-shaped leaf" as the scion and "Short-grafted pekoe" as the rootstock. Substances in tea plants before and after grafting were detected by using broad-targeted metabolomics technology, and multivariate statistical methods such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to study the difference of metabolites before and after grafting. The results showed that a total of 804 metabolites were detected in tea samples before and after grafting, of which 105 metabolites were significantly different; Compared with that before grafting, 44 differential metabolites were significantly up-regulated in tea samples after grafting, and 61 differential metabolites were significantly down-regulated, and the number of differential metabolites down-regulated was greater than that up-regulated; In addition, the study on KEGG metabolic pathways revealed that these differential metabolites were mainly distributed in 20 metabolic pathways including purine metabolism, nicotinate and nicotinamide metabolism, glycerol phosphatide metabolism, flavonoid biosynthesis, flavonoid and flavonol biosynthesis, carbon sequestration by photosynthetic organisms, caffeine metabolism, and biosynthesis of secondary metabolites. Among them, there were 24 differential metabolites annotated by KEGG, which were dominated by flavone, nucleotides and their derivatives. In addition, most flavonoids in the pathways were significantly up-regulated, while nucleotides and their derivatives were significantly down-regulated. In conclusion, the content of metabolites of the variety "Peach-shaped leaf" is significantly changed after grafting, which can provide a theoretical reference for the processing and production of grafted tea leaves to a certain extent.
  • [1]
    杨维时. 茶树嫁接研究进展[J]. 茶叶通讯,1985,12(4):21−24. [YANG Weishi. Research progress of tea grafting[J]. Tea Communication,1985,12(4):21−24.
    [2]
    宁静, 刘文武, 梁国强, 等. 茶树良种嫁接技术研究[J]. 茶叶通讯,2014,41(3):20−23. [NING Jing, LIU Wenwu, LIANG Guoqiang, et al. Study on grafting technology of improved tea varieties[J]. Tea Communication,2014,41(3):20−23. doi: 10.3969/j.issn.1009-525X.2014.03.005
    [3]
    冷杨, 尚怀国, 陈勋, 等. 我国低产低效老茶园改造技术措施及工作建议[J]. 中国农技推广,2019,35(8):11−13. [LENG Yang, SHANG Huaiguo, CHENG Xun, et al. Technical measures and work suggestions for the transformation of low yield and low efficiency old tea plantations in China[J]. China's Agricultural Technology Promotion,2019,35(8):11−13. doi: 10.3969/j.issn.1002-381X.2019.08.004
    [4]
    WANG J, JIANG L B, WU R L. Plant grafting: How genetic exchange promotes vascular reconnection[J]. New Phytologist,2016,214(1):56−65.
    [5]
    HUANG Y, KONG Q S, CHEN F, et al. The history, current statusand future prospects of vegetable grafting in China[J]. Acta Horticulturae,2015,1086:31−39.
    [6]
    何文, 潘鹤立, 潘腾飞, 等. 果树砧穗互作研究进展[J]. 园艺学报,2017,44(9):1645−1657. [HE Wen, PAN Heli, PAN Tengfei, et al. Research progress of rootstock spike interaction in fruit trees[J]. Journal of Horticulture,2017,44(9):1645−1657. doi: 10.16420/j.issn.0513-353x.2017-0147
    [7]
    宁静, 杨阳, 梁国强, 等. 嫁接技术在茶树上的应用研究与展望[J]. 茶叶通讯,2014,41(1):30−33. [NING Jing, YANG Yang, LIANG Guoqiang, et al. Application research and prospect of grafting technology in tea[J]. Tea Communication,2014,41(1):30−33. doi: 10.3969/j.issn.1009-525X.2014.01.009
    [8]
    卢昱宇, 冯伟民, 陈罡, 等. 蔬菜嫁接技术研究进展及应用[J]. 江苏农业科学,2014,42(7):167−169. [LU Yuyu, FENG Weimin, CHEN Gang, et al. Research progress and application of vegetable grafting technology[J]. Jiangsu Agricultural Science,2014,42(7):167−169. doi: 10.3969/j.issn.1002-1302.2014.07.056
    [9]
    吴姗, 骆耀平. 嫁接茶树氨基酸含量变化及分析[J]. 茶叶,2000,26(2):3. [WU Shan, LUO Yaoping. Changes and analysis of amino acid content in grafted tea[J]. Tea,2000,26(2):3. doi: 10.3969/j.issn.0577-8921.2000.02.006
    [10]
    梁月荣, 陆建良, 龚淑英, 等. 嫁接对茶树新梢化学成分的影响[J]. 茶叶,2001,27(1):39−40. [LIANG Yuerong, LU Jianliang, GONG Shuying, et al. Effects of grafting on chemical components of tea shoots[J]. Tea,2001,27(1):39−40. doi: 10.3969/j.issn.0577-8921.2001.01.012
    [11]
    虞昕磊, 艾于杰, 曲凤凤, 等. 代谢组学在研究茶叶品质形成中的应用[J]. 茶叶科学,2018,38(1):20−32. [YU Xinlei, AI Yujie, QU Fengfeng, et al. Metabolomics application in the study of tea quality formation[J]. Journal of Tea Science,2018,38(1):20−32. doi: 10.3969/j.issn.1000-369X.2018.01.003
    [12]
    吴文亮, 林勇, 黄浩, 等. 代谢组学在茶叶品质与药理研究中的应用进展[J]. 中国农业科技导报,2018,20(10):44−54. [WU Wenliang, LIN Yong, HUANG Hao, et al. Application progress of metabonomics in the study of tea quality and pharmacology[J]. China Agricultural Science and Technology Guide,2018,20(10):44−54.
    [13]
    周琼琼, 孙威江. 代谢组学技术及其在茶叶研究中的应用[J]. 天然产物研究与开发,2015,27(10):1821−1826. [ZHOU Qiongqiong, SUN Weijiang. Metabonomics technology and its application in tea research[J]. Natural Product Research and Development,2015,27(10):1821−1826. doi: 10.16333/j.1001-6880.2015.10.024
    [14]
    马成英, 吕美玲, 周珊, 等. 应用UHPLC-QTOF/MS平台结合代谢组学技术研究嫁接对茶叶次生代谢产物的影响[C]. 中国化学会第30届学术年会-第四十三分会: 质谱分析. 2016

    MA Chengying, LÜ Meiling, ZHOU Shan, et al. UHPLC-QTOF/MS platform combined with metabonomics technology was used to study the effect of grafting on secondary metabolites of tea[C]. The 30th Annual Meeting of the Chinese Chemical Society-Chapter 43: Mass Spectrometry. 2016.
    [15]
    邓威威, 范妍冰, 顾辰辰, 等. 油茶砧和茶穗嫁接后苗期叶片形态和次级代谢物含量的变化[J]. 热带亚热带植物学报,2017,25(1):35−42. [DENG Weiwei, FAN Yanbing, GU Chenchen, et al. Changes of leaf morphology and secondary metabolite content of Camellia oleifera after rootstock and tea ear grafting at seedling stage[J]. Journal of Tropical and Subtropical Plants,2017,25(1):35−42. doi: 10.11926/jtsb.3641
    [16]
    杨凤玲. 低产茶园茶树嫁接试验研究[J]. 云南农业科技,2009(2):6−9. [YANG Fengling. Experimental study on tea grafting in low yield tea garden[J]. Yunnan Agricultural Science and Technology,2009(2):6−9. doi: 10.3969/j.issn.1000-0488.2009.02.001
    [17]
    陶仕科, 郑新强, 梁月荣. 云南大叶种茶树老桩套袋嫁接及管理技术[J]. 茶叶,2021,47(3):165−168. [TAO Shike, ZHENG Xinqiang, LIANG Yuerong. Bagging grafting and management technology of old piles of Yunnan large leaf tea[J]. Tea,2021,47(3):165−168. doi: 10.3969/j.issn.0577-8921.2021.03.009
    [18]
    韦持章. 云南大叶茶群体种嫁接乌龙茶品种研究[D]. 南宁: 广西大学, 2012

    WEI Zhizhang. Study on grafting oolong tea varieties with Yunnan Daye tea population species[D]. Nanning: Guangxi University, 2012.
    [19]
    KARUNAKARAN R, LLANGO R. Grafting influence on productivity and drought tolerance of tea clones[J]. The Journal of Agricultural Science,2019,157(3):217−225. doi: 10.1017/S0021859619000480
    [20]
    TUWEI G, KAPTICH F K K, LANGAT M C, et al. Effects of grafting on tea 2. Drought tolerance[J]. Experimental Agriculture,2008,44(4):537−546. doi: 10.1017/S0014479708006947
    [21]
    NAGARAJAH S, SOLOMON H R. Grafting for drought resis-tance in clonal tea[J]. Tea Quarterly,1981,50(4):172−174.
    [22]
    张丽芬, 刘建平. 白化茶树新品种‘景白1号’选育报告[J]. 茶叶,2018,44(3):125−129. [ZHANG Lifen, LIU Jianping. Breeding report of a new albino tea variety 'Jingbai 1'[J]. Tea,2018,44(3):125−129. doi: 10.3969/j.issn.0577-8921.2018.03.002
    [23]
    FENG L, GAO M J, HOU R Y, et al. Determination of quality constituents in the young leaves of albino tea cultivars[J]. Food Chemistry,2014,155(11):98−104.
    [24]
    吴姗, 骆耀平. 嫁接两年生茶树新梢主要生化成分的变化[J]. 茶叶,2001,27(3):5. [WU Shan, LUO Yaoping. Changes of main biochemical components in grafted two-year-old tea shoots[J]. Tea,2001,27(3):5. doi: 10.3969/j.issn.0577-8921.2001.03.007
    [25]
    王文建. 不同砧木嫁接铁观音与茶叶品质关系研究初报[J]. 茶叶科学技术,2007(4):6−8. [WANG Wenjian. Preliminary study on the relationship between Tieguanyin grafted on different rootstocks and tea quality[J]. Tea Science and Technology,2007(4):6−8.
  • Cited by

    Periodical cited type(13)

    1. 王洪江,赵品贞,姬庆,张建忠,王兴伟,夏书芹,张晓鸣. 影响蚝油气味品质的关键风味化合物的研究. 食品与发酵工业. 2025(07): 309-315 .
    2. 张丽华,王子阳,王文博,范雯,白杨,纵伟. 顶空固相微萃取-气相色谱-质谱联用结合气味活度值法分析不同脱腥方法对鸡爪挥发性风味物质的影响. 肉类研究. 2025(04): 17-23 .
    3. 黄磊,孙纪录,张彩璇,张海恩,郭明珠. 淡水鱼腥味物质检测及脱腥技术研究进展. 食品研究与开发. 2024(04): 209-216 .
    4. 付靖雯,陈昌威,沈祥皓,杨柳莺,王则程,杨金玉,盘赛昆. 响应面法优化紫贻贝脱腥及预处理加工工艺. 中国调味品. 2024(06): 15-21 .
    5. 王志龙,王禹,段静瑶,苏岩峰,喻佩. 海参制品腥味化合物形成与脱腥技术研究进展. 中国调味品. 2024(06): 206-212 .
    6. 冯瑞,梁结桦,田柬昕,赵影,张宇,黄达荣,杜冰,钟碧銮. 基于电子鼻和顶空固相微萃取-气相色谱-质谱技术分析不同品种鱼胶的风味差异. 食品科技. 2024(05): 289-298 .
    7. 洪林欣,童星,孙乐常,吴昌正,尹开平,刘康,林端权,张凌晶. 酶解前后牡蛎肉风味变化研究. 食品与发酵工业. 2024(20): 120-128 .
    8. 李放,邓林艳,张婉婷,徐文思,杨祺福,王伯华,杨品红. 淡水虾腥味脱除技术研究进展. 农产品加工. 2023(03): 89-92 .
    9. 石林凡,李周茹,任中阳,刘光明,翁武银. 贝类腥味物质及形成机理研究进展. 中国食品学报. 2023(03): 406-415 .
    10. 陈雅纯,王利文,马爱进,桑亚新,孙纪录. 市售低值贝类加工食品中原肌球蛋白致敏性评估及其消减技术. 食品科学. 2023(07): 169-175 .
    11. 夏强,黄思强,梁倚绮,徐乐,周昌瑜,党亚丽,曹锦轩,涂茂林,孙杨赢,潘道东. 畜禽类肝脏腥味物质与脱腥技术研究进展. 肉类研究. 2023(07): 28-34 .
    12. 刘泽祺,李明霞,杨琳,郑华,林捷,吴绍宗,郭宗林,雷红涛. 畜禽副产物腥味形成机制及脱腥方法研究进展. 食品安全质量检测学报. 2023(16): 86-93 .
    13. 张美琪,代文洁,吴禹琪,郑佳,李松,秦茂林,张淑华,吴同. 酒糟基磁性活性碳制备及其亚甲基蓝吸附机能分析. 宜宾学院学报. 2022(12): 105-109 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (208) PDF downloads (28) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return