Citation: | MIAO Junkui, ZHANG Yating, JIN Yongpei, et al. Application Research of NIR Technology on the Fast Quantification of the Key Quality Indicators of Antarctic Krill Oil[J]. Science and Technology of Food Industry, 2022, 43(14): 10−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120098. |
[1] |
黄洪亮, 陈雪忠. 南极磷虾资源开发利用现状及发展趋势[J]. 中国水产科学,2004,11(增刊):114−119. [HUANG H L, CHEN X Z. Status and development trend of resource operate for Antarctic krill (Euphausua superba)[J]. Journal of Fishery Sciences of China,2004,11(Suppl):114−119.
HUANG H L, CHEN X Z. Status and development trend of resource operate for Antarctic krill (Euphausua superba)[J]. Journal of Fishery Sciences of China, 2004, 11(Suppl): 114-119.
|
[2] |
黄洪亮, 陈雪忠, 冯春雷. 南极磷虾资源开发现状分析[J]. 渔业现代化,2007(1):48−51. [HUANG H L, CHEN X Z, FENG C X. Analysis on the current situation of Antarctic krill resources[J]. Fishery Modernization,2007(1):48−51. doi: 10.3969/j.issn.1007-9580.2007.01.017
HUANG H L, CHEN X Z, FENG C X. Analysis on the current situation of Antarctic krill resources[J]. Fishery Modernization, 2007(1): 48-51. doi: 10.3969/j.issn.1007-9580.2007.01.017
|
[3] |
贾明秀, 刘长东. 基于捕捞数据的南极半岛北部南极磷虾渔获量与驱动因子关系研究[J]. 中国渔业经济,2020,38(2):102−108. [JIA M X, LIU Z D. Study on the relationships between the catches of Antarctic krill (Euphausia superba) and driving factors based on the commercial fishing data[J]. Chinese Fisheries Economics,2020,38(2):102−108. doi: 10.3969/j.issn.1009-590X.2020.02.012
JIA M X, LIU Z D. Study on the relationships between the catches of Antarctic krill (Euphausia superba) and driving factors based on the commercial fishing data[J]. Chinese Fisheries Economics, 2020, 38(2): 102-108. doi: 10.3969/j.issn.1009-590X.2020.02.012
|
[4] |
贺瑞坤, 罗海吉. 南极磷虾油对人类健康的作用[J]. 食品研究与开发,2013,34(20):130−133. [HE R K, LUO H J. Health benefits of Antarctic krill oil[J]. Food Research and Development,2013,34(20):130−133. doi: 10.3969/j.issn.1005-6521.2013.20.037
HE R K, LUO H J. Health benefits of Antarctic krill oil[J]. Food Research and Development, 2013, 34(20): 130-133. doi: 10.3969/j.issn.1005-6521.2013.20.037
|
[5] |
冯迪娜, 袁玥, 朱晓丽. 南极磷虾油生理功能的研究进展[J]. 食品研究与开发,2015,36(7):115−117. [FENG D N, YUAN Y, ZHU X L. Research advances of physiological function on Antartic krill oil[J]. Food Research and Development,2015,36(7):115−117. doi: 10.3969/j.issn.1005-6521.2015.07.031
FENG D N, YUAN Y, ZHU X L. Research advances of physiological function on Antartic krill oil[J]. Food Research and Development, 2015, 36(7): 115-117. doi: 10.3969/j.issn.1005-6521.2015.07.031
|
[6] |
XIE D, GONG M, WEI W, et al. Antarctic krill (Euphausia superba) oil: A comprehensive review of chemical composition, extraction technologies, health benefits, and current applications[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(2):514−534. doi: 10.1111/1541-4337.12427
|
[7] |
PHLEGER C F, NELSON M M, MOONEY B D, et al. Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US Amlr Elephant Island survey area[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2002,131(4):733−747. doi: 10.1016/S1096-4959(02)00021-0
|
[8] |
刘小芳, 刘建志, 唐一新, 等. 南极磷虾油改善虾青素生物利用度的研究[J]. 中国食品学报,2021,7(21):141−148. [LIU X F, LIU J Z, TANG Y X, et al. Studies on the improvement of astaxanthin bioavailability by Antarctic krill oil[J]. Journal of Chinese Institute of Food Science and Technology,2021,7(21):141−148.
LIU X F, LIU J Z, TANG Y X, et al. Studies on the improvement of astaxanthin bioavailability by Antarctic krill oil[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 7(21): 141-148.
|
[9] |
HALS P A, WANG X L, XIAO Y F. Effects of a purified krill oil phospholipid rich in long-chain omega-3 fatty acids on cardiovascular disease risk factors in non-human primates with naturally occurring diabetes Type-2 and dyslipidemia[J]. Lipids in Health and Disease,2017,16(1):11. doi: 10.1186/s12944-017-0411-z
|
[10] |
BERGE K, MUSA-VELOSO K, HARWOOD M, et al. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels[J]. Nutrition Research,2014,34(2):126−133. doi: 10.1016/j.nutres.2013.12.003
|
[11] |
BONATERRA G A, DRISCOLL D, SCHWARZBACH H, et al. Krill oil-in-water emulsion protects against lipopolysaccharide-induced pro-inflammatory activation of macrophages in vitro[J]. Marine Drugs, 2017, 15(3): 74.
|
[12] |
COSTANZO M, CESI V, PALONE F, et al. Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation[J]. Beneficial Microbes,2018,9(3):389−399. doi: 10.3920/BM2017.0078
|
[13] |
SUN D, ZHANG L, CHEN H, et al. Effects of Antarctic krill oil on lipid and glucose metabolism in C57bl/6j mice fed with high fat diet[J]. Lipids in Health and Disease,2017,16(1):218. doi: 10.1186/s12944-017-0601-8
|
[14] |
YANG G, LEE J, LEE S, et al. Krill oil supplementation improves dyslipidemia and lowers body weight in mice fed a high-fat diet through activation of amp-activated protein kinase[J]. Journal of Medicinal Food,2016,19(12):1120−1129. doi: 10.1089/jmf.2016.3720
|
[15] |
LI Q, WU F, WEN M, et al. The protective effect of Antarctic krill oil on cognitive function by inhibiting oxidative stress in the brain of senescence-accelerated prone mouse strain 8 (Samp8) Mice[J]. Journal of Food Science,2018,83(2):543−551. doi: 10.1111/1750-3841.14044
|
[16] |
KONAGAI C, YANAGIMOTO K, HAYAMIZU K, et al. Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: A randomized controlled trial in healthy elderly volunteers[J]. Clinical Interventions in Aging,2013,8:1247−1257.
|
[17] |
KWANTES J M, GRUNDMANN O. A brief review of krill oil history, research, and the commercial market[J]. Journal of Dietary Supplements,2014,12(1):23−35.
|
[18] |
张进, 胡芸, 周罗雄, 等. 近红外光谱分析中的化学计量学算法研究新进展[J]. 分析测试学报,2020,39(10):1196−1203. [ZHANG J, HU Y, ZHOU L X, et al. Progress of chemo metric algorithms in near-infrared spectroscopic analysis[J]. Journal of Instrumental Analysis,2020,39(10):1196−1203. doi: 10.3969/j.issn.1004-4957.2020.10.003
ZHANG J, HU Y, ZHOU L X, et al. Progress of chemo metric algorithms in near-infrared spectroscopic analysis[J]. Journal of Instrumental Analysis, 2020, 39(10): 1196-1203. doi: 10.3969/j.issn.1004-4957.2020.10.003
|
[19] |
GRASSI S, ALAMPRESE C. Advances in NIR spectroscopy applied to process analytical technology in food industries[J]. Current Opinion in Food Science,2018,22:17−21. doi: 10.1016/j.cofs.2017.12.008
|
[20] |
JAMROGIEWICZ M. Application of the near infrared spectroscopy in the pharmaceutical technology[J]. Journal of Pharmaceutical and Biomedical Analysis,2012,66:1−10. doi: 10.1016/j.jpba.2012.03.009
|
[21] |
李佳楠. 近红外光谱技术在粮食检测中的应用进展[J]. 粮食科技与经济,2018,43(8):77−78. [LI J N. Application progress of near infrared spectroscopy technology in food inspection[J]. Grain Science and Technology and Economy,2018,43(8):77−78.
LI J N. Application progress of near infrared spectroscopy technology in food inspection[J]. Grain Science and Technology and Economy, 2018, 43(8): 77-78.
|
[22] |
曾子琦, 蒋立文, 刘霞, 等. 近红外光谱无损检测在食用油脂分析中的应用研究进展[J]. 中国油脂,2018,43(8):137−142. [ZENG Z Q, JIANG L W, LIU X, et al. Advance in application of near infrared spectroscopy in nondestructive analysis of edible oil[J]. China Oils and Fats,2018,43(8):137−142. doi: 10.3969/j.issn.1003-7969.2018.08.029
ZENG Z Q, JIANG L W, LIU X, et al. Advance in application of near infrared spectroscopy in nondestructive analysis of edible oil[J]. China Oils and Fats, 2018, 43(8): 137-142. doi: 10.3969/j.issn.1003-7969.2018.08.029
|
[23] |
张瑜, 谈黎虹, 曹芳, 等. 可见-近红外光谱分析技术对鱼油掺假定量快速无损检测方法研究[J]. 光谱学与光谱分析,2013,33(6):1532−1536. [ZHANG Y, TAN L H, CAO F, et al. Application of visible and near infrared spectroscopy for rapid and non-invasive quantification of adulterants in fish oil[J]. Spectroscopy and Spectral Analysis,2013,33(6):1532−1536. doi: 10.3964/j.issn.1000-0593(2013)06-1532-05
ZHANG Y, TAN L H, CAO F, et al. Application of visible and near infrared spectroscopy for rapid and non-invasive quantification of adulterants in fish oil[J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1532-1536. doi: 10.3964/j.issn.1000-0593(2013)06-1532-05
|
[24] |
王楠, 于宏威, 李军国, 等. 利用近红外光谱技术快速测定鱼油中EPA和DHA含量的方法研究[J]. 中国油脂,2017,42(10):138−142. [WANG N, YU H W, LI J G, et al. Rapid determination of EPA and DHA contents in fish oil by NIR technology[J]. China Oils and Fats,2017,42(10):138−142. doi: 10.3969/j.issn.1003-7969.2017.10.030
WANG N, YU H W, LI J G, et al. Rapid determination of EPA and DHA contents in fish oil by NIR technology[J]. China Oils and Fats, 2017, 42(10): 138-142. doi: 10.3969/j.issn.1003-7969.2017.10.030
|
[25] |
王卫军, 杨建敏, 董迎辉, 等. 长牡蛎(Crassostrea gigas)鲜样组织八种成分含量近红外(NIR)模型的建立[J]. 海洋与湖沼,2015,46(4):845−852. [WANG W J, YANG J M, DONG Y H, et al. Establishment of near infrared models of eight components on fresh tissue of Pacific oyster Crassostrea gigas[J]. Oceanologia et Lmimnologia Sinica,2015,46(4):845−852.
WANG W J, YANG J M, DONG Y H, et al. Establishment of near infrared models of eight components on fresh tissue of Pacific oyster Crassostrea gigas[J]. Oceanologia et Lmimnologia Sinica, 2015, 46(4): 845-852.
|
[26] |
丛心缘, 孙伟红, 张辉珍, 等. 南极磷虾中不同形态虾青素的分离制备、结构鉴定及含量分析[J]. 食品与发酵工业,2019,45(2):174−178. [CONG X Y, SUN W H, ZHANG H Z, et al. Separation, structure identification and content analysis of different forms of astaxanthin in Antarctic krill[J]. Food and Fermentation Industries,2019,45(2):174−178.
CONG X Y, SUN W H, ZHANG H Z, et al. Separation, structure identification and content analysis of different forms of astaxanthin in Antarctic krill[J]. Food and Fermentation Industries, 2019, 45(2): 174-178.
|
[27] |
CONG X Y, MIAO J K, ZHANG H Z, et al. Effects of drying methods on the content, structural isomers, and composition of astaxanthin in Antarctic krill[J]. Acs Omega,2019,4(19):17972−17980. doi: 10.1021/acsomega.9b01294
|
[28] |
CASCANT M M, BREIL C, FABIANO-TIXIER A S, et al. Determination of fatty acids and lipid classes in salmon oil by near infrared spectroscopy[J]. Food Chemistry,2018,239:865−871. doi: 10.1016/j.foodchem.2017.06.158
|
[29] |
彭丹, 李林青, 刘亚丽, 等. 基于近红外光谱两种植物油过氧化值通用模型研究[J]. 光谱学与光谱分析,2020,40(6):1828−1832. [PENG D, LI L Q, LIU Y L, et al. A general model for the peroxidation values of two vegetable oils based on near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(6):1828−1832.
PENG D, LI L Q, LIU Y L, et al. A general model for the peroxidation values of two vegetable oils based on near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1828-1832.
|
[30] |
褚小立, 陈瀑, 李敬岩, 等. 近红外光谱分析技术的最新进展与展望[J]. 分析测试学报,2020,39(10):1181−1188. [CHU X L, CHEN P, LI J Y, et al. Progresses and perspectives of near infrared spectroscopy analytical technology[J]. Journal of Instrumental Analysis,2020,39(10):1181−1188. doi: 10.3969/j.issn.1004-4957.2020.10.001
CHU X L, CHEN P, LI J Y, et al. Progresses and perspectives of near infrared spectroscopy analytical technology[J]. Journal of Instrumental Analysis, 2020, 39(10): 1181-1188. doi: 10.3969/j.issn.1004-4957.2020.10.001
|
1. |
韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 .
![]() | |
2. |
邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
![]() | |
3. |
刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 .
![]() | |
4. |
马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
![]() | |
5. |
赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
![]() | |
6. |
周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
![]() | |
7. |
渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 .
![]() | |
8. |
靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .
![]() |