Citation: | ZENG Jing, GUO Jianjun, YUAN Lin. Research on Improving the Catalytic Activity of Thermoacidophilic Type III Pullulan Hydrolase TK-PUL by Error-prone PCR[J]. Science and Technology of Food Industry, 2022, 43(18): 130−136. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120091. |
[1] |
BELLO-PEREZ L A, FLORES-SILVA P C, AGAMA-ACEVEDO E, et al. Starch digestibility: Past, present, and future[J]. Journal of the Science of Food and Agriculture,2020,100(14):5009−5016. doi: 10.1002/jsfa.8955
|
[2] |
SCHMIELE M, SAMPAIO U M, CLERICI M T P S. Basic principles: Composition and properties of starch[M]. New York: Academic Press, 2019: 1-22.
|
[3] |
OKAFOR D C, OFOEDU C E, NWAKAUDU A, et al. Enzymes as additives in starch processing: A short overview[M]. New York: Academic Press, 2019: 149-168.
|
[4] |
MIAO M, JIANG B, JIN Z, et al. Microbial starch-converting enzymes: Recent insights and perspectives[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(5):1238−1260. doi: 10.1111/1541-4337.12381
|
[5] |
ZHANG Q G, HAN Y, XIAO H Z. Microbial α-amylase: A biomolecular overview[J]. Process Biochemistry,2017,53:88−101. doi: 10.1016/j.procbio.2016.11.012
|
[6] |
NISHA M, SATYANARAYANA T. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases[J]. Applied Microbiology and Biotechnology,2016,100(13):5661−5679. doi: 10.1007/s00253-016-7572-y
|
[7] |
WANG X, NIE Y, XU Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression[J]. Bioresource Technology,2019:360−371.
|
[8] |
AKASSOU M, GROLEAU D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: A review[J]. Critical Reviews in Biotechnology,2019,39(3):337−350. doi: 10.1080/07388551.2019.1566202
|
[9] |
XIA W, ZHANG K, SU L, et al. Microbial starch debranching enzymes: Developments and applications[J]. Biotechnology Advances,2021:107786.
|
[10] |
HAN T, ZENG F, LI Z, et al. Biochemical characterization of a recombinant pullulanase from Thermococcus kodakarensis KOD1[J]. Letters in Applied Microbiology,2013,57(4):336−343. doi: 10.1111/lam.12118
|
[11] |
AHMAD N, RASHID N, HAIDER M S, et al. Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcus kodakarensis[J]. Applied and Environmental Microbiology,2014,80(3):1108−1114. doi: 10.1128/AEM.03139-13
|
[12] |
TOOR K J, AHMAD N, MUHAMMAD M A, et al. TK-PUL, a pullulan hydrolase type III from Thermococcus kodakarensis, a potential candidate for simultaneous liquefaction and saccharification of starch[J]. Amylase,2020,4(1):45−55. doi: 10.1515/amylase-2020-0004
|
[13] |
曾静, 郭建军, 袁林. 嗜热酸性普鲁兰水解酶Ⅲ的高效分泌表达及其酶学性质[J]. 食品工业科技,2020,41(3):98−103, 109. [ZENG J, GUO J J, YUAN L. Efficient secretory expression of thermoacidiphilic type III pullulan hydrolase and its enzymatic properties[J]. Science and Technology of Food industry,2020,41(3):98−103, 109.
ZENG J, GUO J J, YUAN L. Efficient secretory expression of thermoacidiphilic type III pullulan hydrolase and its enzymatic properties[J]. Science and Technology of Food industry, 2020, 41(3): 98-103, 109.
|
[14] |
KATARIA A, SHARMA R, SHARMA S, et al. Recent applications of bio-engineering principles to modulate the functionality of proteins in food systems[J]. Trends in Food Science & Technology,2021,113:54−65.
|
[15] |
XU Y, WU Y, LV X, et al. Design and construction of novel biocatalyst for bioprocessing: Recent advances and future outlook[J]. Bioresource Technology,2021:125071.
|
[16] |
ZENG W, GUO L, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends in Biotechnology,2020,38(8):888−906. doi: 10.1016/j.tibtech.2020.01.001
|
[17] |
WU H, TIAN X, DONG Z, et al. Engineering of Bacillus amyloliquefaciens α-amylase with improved calcium independence and catalytic efficiency by error-prone PCR[J]. Starch-Stärke,2018,70(3−4):1700175.
|
[18] |
GAOL M D F L, SATYA A A, PUSPITASARI E, et al. Increasing hydrolytic activity of lipase on palm oil by PCR-based random mutagenesis[J]. International Journal of Oil Palm,2020,3(3):78−87. doi: 10.35876/ijop.v3i3.53
|
[19] |
DAI S, YAO Q, YU G, et al. Biochemical characterization of a novel bacterial laccase and improvement of its efficiency by directed evolution on dye degradation[J]. Frontiers in Microbiology,2021:12.
|
[20] |
SUN Z B, XU J L, LU X, et al. Directed mutation of β-glucanases from probiotics to enhance enzymatic activity, thermal and pH stability[J]. Archives of Microbiology,2020,202(7):1749−1756. doi: 10.1007/s00203-020-01886-z
|
[21] |
SU L, YAO K, WU J. Improved activity of Sulfolobus acidocaldarius maltooligosyltrehalose synthase through directed evolution[J]. Journal of Agricultural and Food Chemistry,2020,68(15):4456−4463. doi: 10.1021/acs.jafc.0c00948
|
[22] |
BASIT A, TAJWAR R, SADAF S, et al. Improvement in activity of cellulase Cel12A of Thermotoga neapolitana by error prone PCR[J]. Journal of Biotechnology,2019,306:118−124. doi: 10.1016/j.jbiotec.2019.09.011
|
[23] |
ANAGNOSTOPOULOS C, SPIZIZEN J. Requirements for transformation in Bacillus subtilis[J]. Journal of Bacteriol,1961,81(5):741−746. doi: 10.1128/jb.81.5.741-746.1961
|
[24] |
GREEN M R, SAMBROOK J. Molecular cloning: A laboratory manual[M]. New York: Cold Spring Harbor Laboratory Press, 2012: 101-200.
|
[25] |
MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426−428. doi: 10.1021/ac60147a030
|
[26] |
曾静, 何础阔, 郭建军, 等. N末端结构模块缺失对嗜热酸性III型普鲁兰多糖水解酶TK-PUL酶学性质的影响[J]. 食品科学,2021,42(10):201−208. [ZENG J, HE C K, GUO J J, et al. Effect of truncation of N-terminal structural modules on enzymatic properties of thermoacidiphilic type III pullulan hydrolase TK-PUL[J]. Food Science,2021,42(10):201−208. doi: 10.7506/spkx1002-6630-20200408-099
ZENG J, HE C K, GUO J J, et al. Effect of truncation of N-terminal structural modules on enzymatic properties of thermoacidiphilic type III pullulan hydrolase TK-PUL[J]. Food Science, 2021, 42(10): 201-208. doi: 10.7506/spkx1002-6630-20200408-099
|
[27] |
WATERHOUSE A, BERTONI M, BIENERT S, et al. SWISS-MODEL: Homology modelling of protein structures and complexes[J]. Nucleic Acids Research,2018,46(W1):W296−W303. doi: 10.1093/nar/gky427
|
[28] |
LIU B, PENG Q, SHENG M, et al. Directed evolution of sulfonylurea esterase and characterization of a variant with improved activity[J]. Journal of Agricultural and Food Chemistry,2018,67(3):836−843.
|
[29] |
GUO J, COKER A, WOOD S, et al. Structure and function of the type III pullulan hydrolase from Thermococcus kodakarensis[J]. Acta Crystallographica Section D,2018,74(4):305−314. doi: 10.1107/S2059798318001754
|
[30] |
MØLLER M S, HENRIKSEN A, SVENSSON B. Structure and function of α-glucan debranching enzymes[J]. Cellular and Molecular Life Sciences,2016,73(14):2619−2641. doi: 10.1007/s00018-016-2241-y
|