LI Jiaxin, WU Xinye, BI Jinfeng, et al. Characterization of Key Aroma Compounds of Apple Slices Dried by Hot-air at Different Temperatures by GC-MS and Electronic Nose[J]. Science and Technology of Food Industry, 2022, 43(18): 272−282. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120071.
Citation: LI Jiaxin, WU Xinye, BI Jinfeng, et al. Characterization of Key Aroma Compounds of Apple Slices Dried by Hot-air at Different Temperatures by GC-MS and Electronic Nose[J]. Science and Technology of Food Industry, 2022, 43(18): 272−282. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120071.

Characterization of Key Aroma Compounds of Apple Slices Dried by Hot-air at Different Temperatures by GC-MS and Electronic Nose

More Information
  • Received Date: December 06, 2021
  • Available Online: July 11, 2022
  • To clarify the key aroma compounds of Fuji apples and the influence of drying temperatures, the volatile compounds of Fuji apple slices dried by hot-air at 50, 60, 70 and 80 ℃ were characterized by head space solid-phase micro-extraction gas chromatography-mass spectrometer (HS-SPME-GC-MS) combined with electronic nose. The results showed that 64 volatile compounds were identified in fresh and four kinds of dried apple samples, including 23 esters, 18 alcohols, 8 aldehydes, 2 alkenes, 2 ketones, 3 lactones, 1 acid, 3 sulfur-containing compounds and 4 heterocyclic compounds. The differences between types and contents of volatile compounds in different samples were great. The content of aroma compounds in fresh samples was 397.059 mg/kg. Total volatile compounds contents in four hot-air dried samples from high to low were 64.189 mg/kg at 50 ℃, 57.703 mg/kg at 80 ℃, 32.124 mg/kg at 70 ℃ and 32.020 mg/kg at 60 ℃, respectively. Odor-active value (OAV) analysis showed that there were 8 key aroma compounds both in fresh apple sample and hot-air dried apple samples. They were α-farnesene (12746.11~1597.75), hexyl 2-methylbutyrate (755.62~6.90), hexanol (2988.00~168.54), 1-octene-3-ol (53.12~12.08), nonanal (1534.99~47.36), trans-2-nonenal (1202.98~189.38), linalool (1264.30~212.75) and 6-methy-5-hepten-2-one (11.27~3.90). The key aroma compounds identified in hot-air dried samples included 2-methyl-1-butanol (32.26~7.16), 3-methyl-4-heptanol (14.39~6.90), phenylethanol (11.11~4.67), octanal (211.25~84.36), 3-hydroxy-2-butanone (64.57~21.86), 3-methylthiopropanol (13.52~5.88) and 2-pentylfuran (26.44~14.88). Electronic nose analysis showed that there were differences in aroma profiles between fresh apple and apple slices dried by hot-air at different temperatures. The fresh samples and dried apple slices could be effectively distinguished by principle component analysis (PCA). Considering aroma and energy consumption, 80 ℃ hot air dehydration apple slices had better characteristic aroma than 50 ℃ hot air treatments. Therefore, 80 ℃ hot air drying was the optimal drying condition.
  • [1]
    王崧百. 苹果脆片产业发展研究[J]. 食品安全导刊,2021(26):166−168. [WANG S B. Study on the development of apple chips industry[J]. China Food Safety Magazine,2021(26):166−168. doi: 10.16043/j.cnki.cfs.2021.26.111

    WANG S B. Study on the development of apple chips industry[J]. China Food Safety Magazine, 2021(26): 166-168. doi: 10.16043/j.cnki.cfs.2021.26.111
    [2]
    楚倩倩, 任广跃, 段续, 等. 过热蒸汽和热风干燥在食品领域中的应用对比[J/OL]. 食品与发酵工业: 1−12[2022-01-08]

    CHU Q Q, REN G Y, DUAN X, et al. Application comparison of superheated steam and hot-air drying in the food field[J/OL]. Food and Fermentation Industries: 1−12[2022-01-08].
    [3]
    莫一凡, 姚凌云, 冯涛, 等. 水果干风味物质及干燥方式的影响研究[J]. 中国果菜,2020,40(6):23−28,40. [MO Y F, YAO L Y, FENG T, et al. Study on flavor substances of dried fruits and the effects of drying methods[J]. China Fruit & Vegetable,2020,40(6):23−28,40.

    6): 23-28, 40. MO Y F, YAO L Y, FENG T, et al. Study on flavor substances of dried fruits and the effects of drying methods[J]. China Fruit & Vegetable, 2020, 40(6): 23-28, 40.
    [4]
    郭卫芸, 李光辉, 张珍珍, 等. 香椿中特征性香气成分定量分析及其在热风干燥过程中的变化规律[J]. 食品研究与开发,2021,42(3):14−19. [GUO W Y, LI G H, ZHANG Z Z, et al. Quantitative analysis of Toona sinensis aroma components and viariation rule during hot air dry process[J]. Food Research and Development,2021,42(3):14−19.

    GUO W Y, LI G H, ZHANG Z Z, et al. Quantitative analysis of Toona sinensis aroma components and viariation rule during hot air dry process[J]. Food Research and Development, 2021, 42(3): 14-19.
    [5]
    DIMICK P S, HOSKIN J C, ACREE T E. Review of apple flavor-State of the art[J]. C R C Critical Reviews in Food Science & Nutrition,1983,18:387−409.
    [6]
    REIS S, ROCHA S, BARROS A, et al. Establishment of the volatile profile of ‘Bravo de Esmolfe’ apple variety and identification of varietal markers[J]. Food Chemistry,2009,113(2):513−521. doi: 10.1016/j.foodchem.2008.07.093
    [7]
    石芬, 徐军, 姜宗伯, 等. HS-SPME-GC-MS结合多元统计分析初榨椰子油常温储藏过程中挥发性风味成分[J]. 食品工业科技, 2022, 43(10):314-322.

    SHI F, XU J, JIANG Z B, et al. Analysis of volatile flavor components of virgin coconut oil during normal temperature storage based on HS-SPME-GC-MS and multivariate statistical analysis[J]. Science and Technology of Food Industry, 2022, 43(10):314-322.
    [8]
    王铁儒, 郭丽, 马曼, 等. SPME-GC-MS与电子鼻结合分析不同酵母混菌发酵猕猴桃酒的挥发性香气物质[J]. 食品工业科技,2021,42(16):119−128. [WANG T R, GUO L, MA M, et al. Analysis of volatile aroma compounds in kiwi wine co-fermentation with different yeasts by SPME-GC-MS combined with electronic nose[J]. Science and Technology of Food Industry,2021,42(16):119−128. doi: 10.13386/j.issn1002-0306.2021010133

    WANG T R, GUO L, MA M, et al. Analysis of volatile aroma compounds in kiwi wine co-fermentation with different yeasts by SPME-GC-MS combined with electronic nose[J]. Science and Technology of Food Industry, 2021, 42(16): 119-128. doi: 10.13386/j.issn1002-0306.2021010133
    [9]
    TIMOUMI S, MIHOUBI D, ZAGROUBA F. Shrinkage, vitamin C degradation and aroma losses during infra-red drying of apple slices[J]. LWT-Food Science and Technology,2007,40:1648−1654. doi: 10.1016/j.lwt.2006.11.008
    [10]
    KROKIDA M K, PHILIPPOPOULOS C. Volatility of apples during air and freeze drying[J]. Journal of Food Engineering,2006,73(2):135−141. doi: 10.1016/j.jfoodeng.2005.01.012
    [11]
    SONG J, CHEN Q, BI J, et al. GC/MS coupled with MOS e-nose and flash GC e-nose for volatile characterization of Chinese jujubes as affected by different drying methods[J]. Food Chemistry,2020,331:127201. doi: 10.1016/j.foodchem.2020.127201
    [12]
    曹有芳, 刘丹, 徐俊南, 等. 基于电子鼻和气相色谱-质谱联用技术分析不同品种苹果酒香气物质[J]. 中国酿造,2020,39(2):182−188. [CAO Y F, LIU D, XV J N, et al. Analysis of aroma substances in apple wines brewed with different varieties of apple by electronic nose combined with GC-MS[J]. China Brewing,2020,39(2):182−188. doi: 10.11882/j.issn.0254-5071.2020.02.034

    CAO Y F, LIU D, XV J N, et al. Analysis of aroma substances in apple wines brewed with different varieties of apple by electronic nose combined with GC-MS[J]. China Brewing, 2020, 39(2): 182-188. doi: 10.11882/j.issn.0254-5071.2020.02.034
    [13]
    农业部农产品加工局. NY/T 2779-2015 苹果脆片[S]. 北京: 中国人民共和国农业部, 2015.

    Agricultural Products Processing Bureau of Ministry of Agriculture. NY/T 2779-2015 Apple crisp chips[S]. Beijing: The Ministry of Agriculture of the People’s Republic of China, 2015.
    [14]
    曾辉. 不同品种苹果特征香气的表征与识别[D]. 长沙: 湖南农业大学, 2016.

    ZENG H. Research on representation and recognition of characteristic aroma of different apple cultivars[D]. Changsha: Hunan Agricultural University, 2016.
    [15]
    于怀龙, 马永昆, 张荣, 等. 不同品种桑椹香气成分的主成分分析[J]. 食品工业科技,2016,37(10):62−66,71. [YU H L, MA Y K, ZHANG R, et al. Principal component analysis of aroma components in mulberry from different varieties[J]. Science and Technology of Food Industry,2016,37(10):62−66,71. doi: 10.13386/j.issn1002-0306.2016.10.003

    YU H L, MA Y K, ZHANG R, et al. Principal component analysis of aroma components in mulberry from different varieties[J]. Science and Technology of Food Industry, 2016, 37(10): 62-66, 71. doi: 10.13386/j.issn1002-0306.2016.10.003
    [16]
    万鹏, 梁国平, 马丽娟, 等. 19个苹果品种果实香气成分的GC-MS分析[J]. 食品工业科技,2019,40(14):227−232. [WAN P, LIANG G P, MA L J, et al. GC-MS analysis of fruit aroma components in 19 apple varieties[J]. Science and Technology of Food Industry,2019,40(14):227−232.

    WAN P, LIANG G P, MA L J, et al. GC-MS analysis of fruit aroma components in 19 apple varieties[J]. Science and Technology of Food Industry, 2019, 40(14): 227-232.
    [17]
    ZHU J, CHEN F, WANG L, et al. Characterization of the key aroma volatile compounds in cranberry (Vaccinium macrocarpon Ait. ) using gas chromatography–olfactometry (GC-O) and odor activity value (OAV)[J]. Journal of Agricultural and Food Chemistry,2016,64:4990−4999. doi: 10.1021/acs.jafc.6b01150
    [18]
    DIXON J, HEWETT E W. Factors affecting apple aroma/flavour volatile concentration: A review[J]. New Zealand Journal of Crop and Horticultural Science,2000,28(3):155−173. doi: 10.1080/01140671.2000.9514136
    [19]
    GIRARD B, LAU O L. Effect of maturity and storage on quality and volatile production of “Jonagold” apples[J]. Food Research International,1995,28(5):465−471. doi: 10.1016/0963-9969(96)81393-7
    [20]
    APREA E, COROLLARO M L, BETTA E, et al. Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavour[J]. Food Research International,2012,49(2):677−686. doi: 10.1016/j.foodres.2012.09.023
    [21]
    ZHANG J, CAO Z, PEI P, et al. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS[J]. Food Research International,2019,123:217−225. doi: 10.1016/j.foodres.2019.04.069
    [22]
    张志兵, 连琛, 詹瑞玲, 等. 气相色谱-质谱联用法分析不同品种苹果酿造蒸馏酒中香气成分及特征[J]. 中国酿造,2021,40(9):191−195. [ZHANG Z B, LIAN S, ZHAN R L, et al. Analysis of aroma components and characteristics in apple distillations brewed with different varieties of apple by GC-MS[J]. China Brewing,2021,40(9):191−195. doi: 10.11882/j.issn.0254-5071.2021.09.034

    ZHANG Z B, LIAN S, ZHAN R L, et al. Analysis of aroma components and characteristics in apple distillations brewed with different varieties of apple by GC-MS[J]. China Brewing, 2021, 40(9): 191-195. doi: 10.11882/j.issn.0254-5071.2021.09.034
    [23]
    赵志聪, 白启正, 连琛, 等. 苹果白兰地原酒蒸馏过程中挥发性香气成分的变化[J]. 现代食品,2021(15):80−85. [ZHAO Z C, BAI Q Z, LIAN C, et al. Changes of volatile aroma components during distillation of apple brandy[J]. Modern Food,2021(15):80−85. doi: 10.16736/j.cnki.cn41-1434/ts.2021.15.021

    ZHAO Z C, BAI Q Z, LIAN C, et al. Changes of volatile aroma components during distillation of apple brandy[J]. Modern Food, 2021(15): 80-85. doi: 10.16736/j.cnki.cn41-1434/ts.2021.15.021
    [24]
    裴鹏正, 贠建民, 贾琦, 等. 软儿梨果酒发酵过程中挥发性风味物质变化分析[J]. 生物技术进展,2021,11(6):758−769. [PEI P Z, YUN J M, JIA Q, et al. Analysis on changes of volatile flavor compounds in Zuaner pear wine during fermentation[J]. Current Biotechnology,2021,11(6):758−769. doi: 10.19586/j.2095-2341.2021.0086

    PEI P Z, YUN J M, JIA Q, et al. Analysis on changes of volatile flavor compounds in Zuaner pear wine during fermentation[J]. Current Biotechnology, 2021, 11(6): 758-769. doi: 10.19586/j.2095-2341.2021.0086
    [25]
    CHUNG H Y, YUNG I, MA W, et al. Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry[J]. Food Research International,2002,35(1):43−53. doi: 10.1016/S0963-9969(01)00107-7
    [26]
    LIU H, WANG Z, ZHANG D, et al. Characterization of key aroma compounds in Beijing Roasted Duck by gas chromatography-olfactometry-mass spectrometry, odor activity values and aroma recombination experiments[J]. Journal of Agricultural and Food Chemistry, 2019, 67(20):5847−5856.
    [27]
    TAIRU A O, HOFMANN T, SCHIEBERLE P. Characterization of the key aroma compounds in dried fruits of the West African peppertree Xylopia aethiopica (Dunal) A. Rich (Annonaceae) using aroma extract dilution analysis[J]. Journal of Agricultural & Food Chemistry,1999,47(8):3285−3287.
    [28]
    JORRY, DHARMAWAN, STEFAN, et al. Evaluation of aroma-active compounds in pontianak orange peel oil (Citrus nobilis Lour. Var. microcarpa Hassk.) by gas chromatography olfactometry, aroma reconstitution, and omission test[J]. Journal of Agricultural and Food Chemistry,2009,57(1):239−244. doi: 10.1021/jf801070r
    [29]
    VANOLI M, VISAI C, RIZZOLO A. The influence of harvest date on the volatile composition of 'Starkspur Golden' apples[J]. Postharvest Biology and Technology,1995,6(3):225−234.
    [30]
    VARMING C, ANDERSEN M L. Influence of thermal treatment on black currant (Ribes nigrum L.) juice aroma[J]. Journal of Agricultural & Food Chemistry,2004,52(25):7628−7636.
    [31]
    BERDAGUE J L, MONTEIL P, MONTEL M C, et al. Talon effects of starter cultures on the formation of flavour compounds in dry sausage[J]. Meat Science,1993,35:275−287. doi: 10.1016/0309-1740(93)90033-E
    [32]
    BARBIERI G, BOLZONI L, PAROLARI G, et al. Flavor compounds of dry-cured ham[J]. Journal of Agricultural & Food Chemistry,1992,40(12):2389−2394.
    [33]
    PELLEGRINO, CONTE, GENNARO, et al. Comparing different processing methods in apple slice drying. Part 2 solid-state fast field cycling 1H-NMR relaxation properties, shrinkage and changes in volatile compounds[J]. Biosystems Engineering,2019,188:345−354. doi: 10.1016/j.biosystemseng.2019.10.020
    [34]
    MISHARINA T A, MUHUTDINOVA S M, ZHARIKOVA G G, et al. Formation of flavor of dry champignons (Agaricus bisporus L.)[J]. Applied Biochemistry & Microbiology,2010,46(1):108−113.
    [35]
    VALAPPIL Z A, FAN X, ZHANG H Q, et al. Impact of thermal and nonthermal processing technologies on unfermented apple cider aroma volatiles[J]. J Agric Food Chem,2009,57(3):924−929. doi: 10.1021/jf803142d
    [36]
    MOREIRA N, MENDES F, PEREIRA O, et al. Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts[J]. Analytica Chimica Acta,2002,458(1):157−167. doi: 10.1016/S0003-2670(01)01618-X
    [37]
    METHVEN L, MARIA. Influence of sulfur amino acids on the volatile and nonvolatile components of cooked salmon (Salmo salar)[J]. Journal of Agricultural and Food Chemistry,2007,55(4):1427−1436. doi: 10.1021/jf0625611
    [38]
    RODRIGO O S, CONSUELO D M, SOLEDAD P C, et al. Viability of pre-treatment drying methods on mango peel by-products to preserve flavouring active compounds for its revalorisation-ScienceDirect[J]. Journal of Food Engineering,2020,279:109953. doi: 10.1016/j.jfoodeng.2020.109953
    [39]
    GOKMEN V, MORALES F. Processing contaminants: Hydroxymethylfurfural[J]. Encyclopedia of Food Safety,2014,2:404−408.
    [40]
    RANNOU C, LAROQUE D, RENAULT E, et al. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the maillard reaction in foods[J]. Food Research International,2016,90(PT.3):154−176.
    [41]
    AMEUR L A, REGA B, GIAMPAOLI P, et al. The fate of furfurals and other volatile markers during the baking process of a model cookie[J]. Food Chemistry,2008,111(3):758−763. doi: 10.1016/j.foodchem.2007.12.062
    [42]
    里奥·范海默特. 化合物香味阈值汇编[M]. 北京: 科学出版社, 2015.

    VAN GEMERT J L. Compilations of flavour threshold values in water and other media[M]. Beijing: Science Press, 2015.
    [43]
    VCF online by BeWiDo BV Inc. Volatile compounds in food[DB/OL]. [2021-11-30].https://www.vcf-online.nl/VcfHome.cfm.
    [44]
    Gas chromatography-olfactometry (GCO) of natural products sponsored by DATU Inc. Flavornet and human odor space[DB/OL]. [2021-11-30]. http://www.flavornet.org/flavornet.html.
  • Cited by

    Periodical cited type(18)

    1. 蒯振彧,吴凌燕,曾宣,朱正飞,孟艳秋. 基于PTK靶点的黄芪中黄酮化合物抗肿瘤筛选及活性研究. 沈阳药科大学学报. 2025(02): 162-169 .
    2. 崔瑞芳,李仁廷,纪长隆,高孔雀,张亚茹. 沙参麦冬汤治疗肺癌临床及基础研究进展. 辽宁中医药大学学报. 2024(04): 211-216 .
    3. 李兴强,晁旭,冯雪松. 槲皮素对肝细胞性肝癌的增效减毒效应研究进展. 世界科学技术-中医药现代化. 2024(02): 287-293 .
    4. 周锋,沙德胜,卢瑗瑗,陈维. 槲皮素提高人结直肠癌细胞SW480和SW620对顺铂的敏感性. 西安交通大学学报(医学版). 2024(06): 902-908 .
    5. 朱陆姣,王海波,姜宁祖,王文安,庄家圆,周珩. 槲皮素对胃癌的抑制作用及免疫调节机理研究. 西部中医药. 2024(11): 6-12 .
    6. 李丹,汪鸣霄,周洵. 基于网络药理学探讨加减消瘰丸治疗肺结节病的作用机制. 贵州科学. 2024(06): 27-32 .
    7. 邢文雅,刘锦梅,尹鑫东,周源子,寇世禄,黄麟琅,曹仕兵. 基于数据挖掘和网络药理学探讨中药治疗肠痈的用药规律及作用机制. 湖南中医杂志. 2024(12): 34-43 .
    8. 张立,周继红,谢嘉嘉,焦小强,李珏卉,何逸龙. 淫羊藿-巴戟天治疗新型冠状病毒感染肺肾两虚型的网络药理学分析. 现代医药卫生. 2023(03): 404-410+414 .
    9. 李雪,李俐,王小龙,郝利民,刘永奇,刘可可,张雪梅,鲁吉珂,伊娟娟. 多酚类化合物基于非编码RNA调控发挥抗肿瘤及辐射增敏作用研究进展. 食品科学. 2023(05): 222-230 .
    10. 潘晔,符诚,王欣,张明利. 基于数据挖掘和网络药理学探究新型冠状病毒感染治疗方的组方规律及作用机制. 中医临床研究. 2023(14): 10-20 .
    11. 程菲儿,要子妍,云少君,曹瑾玲,程艳芬,冯翠萍. 荞麦槲皮素改善脂代谢异常肝原代细胞的作用机制. 食品研究与开发. 2023(15): 70-75 .
    12. Can Huang,Ling Yuan,Yang Niu,Ya-Ting Yang,Yi-Fan Yang,Yi Nan,Hong-Li Dou,Joanna Japhet. Using Network Pharmacology and Molecular Docking Tools to Investigate the Potential Mechanism of Ephedra-Gypsum in the Treatment of Respiratory Diseases. World Journal of Traditional Chinese Medicine. 2023(02): 150-159 .
    13. 林丽彬,谢群,邱新悦,吴梦羽,徐丽,张静霞. 槲皮素经抑制己糖激酶活性介导人肝癌Huh-7细胞的增殖、侵袭和转移. 中华实验外科杂志. 2023(10): 1951-1954 .
    14. 张欣,刘峥,张颖,郭永胜,李建章,高强. 环氧化槲皮素合成及其对豆胶性能的影响. 林业工程学报. 2022(05): 87-92 .
    15. 董敬,彭小芸,付西,任益锋,张龙飞,李林炯,祝捷,由凤鸣. 基于数据挖掘和网络药理学的中医药治疗肺结节用药规律及作用机制分析. 中草药. 2022(20): 6544-6557 .
    16. 王博,覃富强,邓凤莹,罗惠格,陈祥飞,成果,白扬,黄小云,韩佳宇,曹雄军,白先进. ‘阳光玫瑰’葡萄一年两收果实类黄酮组分及含量差异分析. 中国农业科学. 2022(22): 4473-4486 .
    17. 李旭东,吴静澜,田孟斌,聂琴. 高粱泡叶化学成分的UHPLC-Q Exactive Focus MS/MS分析. 湖北民族大学学报(医学版). 2022(04): 18-22 .
    18. 邢智芹. 槲皮素生物学功能及其对动物生产与经济效益的影响研究进展. 饲料研究. 2022(24): 155-159 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (220) PDF downloads (18) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return