FENG Jiawen, ZHENG Yunfang, ZHANG Fang, et al. Effect of Ultrasonic Treatment on the Structure and Functional Properties of Myofibrillar Protein in Sea Bass[J]. Science and Technology of Food Industry, 2022, 43(17): 95−103. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120027.
Citation: FENG Jiawen, ZHENG Yunfang, ZHANG Fang, et al. Effect of Ultrasonic Treatment on the Structure and Functional Properties of Myofibrillar Protein in Sea Bass[J]. Science and Technology of Food Industry, 2022, 43(17): 95−103. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120027.

Effect of Ultrasonic Treatment on the Structure and Functional Properties of Myofibrillar Protein in Sea Bass

More Information
  • Received Date: December 02, 2021
  • Available Online: July 02, 2022
  • In this paper, sea bass (Lateolabrax maculatus) were uesd as raw material to study the effect of ultrasound on the structure and functional properties of myofibrillar proteins in sea bass by the different ultrasonic power in the range of 0~540 W and time at 0~12 min. The results showed that, with the extension of the ultrasonic time and power, the sulfhydryl content of myofibrillar protein decreased, while the UV absorbance increased, and the α-helix content had a tendency to transform into β-sheets, β-turns and random coils. Ultrasound at 180~450 W, particle size and turbidity of myofibrillar protein were reduced, the solubility was improved. Ultrasonic treatment improved the rheological properties of myofibrillar and increased the G' and G" in the thermally induced gel process. Principal component and cluster analysis showed that different ultrasonic power and time had a greater impact on the physical and chemical properties of myofibrillar protein. These findings suggested that ultrasound altered the structure of myofibrillar proteins in sea bass, which affected rheological properties and contributed to better functional performance.
  • [1]
    陈大刚. 鲈鱼[J]. 水产科技情报,1976(10):29−30. [CHEN D G. Bass (Lateolabrax maculatus)[J]. Fisheries Science and Technology Information,1976(10):29−30.

    CHEN D G. Bass (Lateolabrax Maculatus)[J]. Fisheries Science and Technology Information, 1976, (10): 29-30.
    [2]
    CAI L, WU X, LI X, et al. Effects of different freezing treatments on physicochemical responses and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) fillets during refrigerated storage[J]. LWT-Food Science and Technology,2014,59(1):122−129. doi: 10.1016/j.lwt.2014.04.062
    [3]
    MIYAKE Y, ITAKURA H, TAKESHIGE A, et al. Multiple habitat use of Japanese sea bass Lateolabrax japonicus in the estuary region of the Tone River system, implied by stable isotope analysis[J]. Ichthyological Research,2019,66(1):172−176. doi: 10.1007/s10228-018-0655-2
    [4]
    PAN S, WU S. Effect of chitooligosaccharides on the denaturation of weever myofibrillar protein during frozen storage[J]. International Journal of Biological Macromolecules,2014(65):549−552.
    [5]
    LI P Y, PENG Y F, MEI J, et al. Effects of microencapsulated eugenol emulsions on microbiological, chemical and organoleptic qualities of farmed Japanese sea bass (Lateolabrax japonicus) during cold storage[J]. LWT-Food Science and Technology,2020,118:1−13.
    [6]
    DEMIR O, GUNLU A, KUCUK F, et al. Analysis of sarcoplamic proteins in natural populations of mountain trout (Salmotrutta macrostigma Dumeril, 1858) with SDS-PAGE[J]. African Journal of Biotechnology,2011,10(55):11758−11763.
    [7]
    XU Y, XU X. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):458−500. doi: 10.1111/1541-4337.12665
    [8]
    GUIMARAES J T, BALTHAZAR C F, SCUDINO H, et al. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products[J]. Ultrasonics Sonochemistry,2019,57:12−21. doi: 10.1016/j.ultsonch.2019.05.004
    [9]
    AMIRI A, SHARIFIAN P, SOLTANIZADEH N. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins[J]. International Journal of Biological Macromolecules,2018,111:139−147. doi: 10.1016/j.ijbiomac.2017.12.167
    [10]
    LI K, FU L, ZHAO Y Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids,2020,98:1−11.
    [11]
    PARK D, XIONG Y L, ALDERTON A L, et al. Biochemical changes in myofibrillar protein isolates exposed to three oxidizing systems[J]. Journal of Agricultural and Food Chemistry,2006,54(12):4445−4451. doi: 10.1021/jf0531813
    [12]
    PHATCHARAT S, BENJAKUL S, VISESSANGUAN W. Effects of washing with oxidising agents on the gel-forming ability and physicochemical properties of surimi produced from bigeye snapper (Priacanthus tayenus)[J]. Food Chemistry,2006,98(3):431−439. doi: 10.1016/j.foodchem.2005.06.016
    [13]
    WANG Y, ZHOU Y, LI P J, et al. Combined effect of CaCl2 and high pressure processing on the solubility of chicken breast myofibrillar proteins under sodium-reduced conditions[J]. Food Chemistry,2018,269:236−243. doi: 10.1016/j.foodchem.2018.06.107
    [14]
    韩敏义, 徐幸莲, 林丽军, 等. 兔骨骼肌肌球蛋白的纯化及溶液浊度和溶解度研究[J]. 食品科学,2004(12):50−54. [HAN M Y, XUN X L, LIN L J, et al. Purification of rabbit skeletal muscle myosin and study on turbidity and solubility of solution[J]. Food Science,2004(12):50−54. doi: 10.3321/j.issn:1002-6630.2004.12.006

    HAN M Y, XUN X L, LIN L J, et al. Purification of rabbit skeletal muscle myosin and study on turbidity and solubility of solution[J]. Food Science, 2004, (12): 50-54. doi: 10.3321/j.issn:1002-6630.2004.12.006
    [15]
    GUO X Y, PENG Z Q, ZHANG Y W, et al. The solubility and conformational characteristics of porcine myosin as affected by the presence of L-lysine and L-histidine[J]. Food Chemistry,2015,170:212−217. doi: 10.1016/j.foodchem.2014.08.045
    [16]
    ZHANG Z, REGENSTEIN J M, ZHOU P, et al. Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel[J]. Ultrasonics Sonochemistry,2017,34:960−967. doi: 10.1016/j.ultsonch.2016.08.008
    [17]
    HAN Z, CAI M J, CHENG J H, et al. Effects of microwave and water bath heating on the interactions between myofibrillar protein from beef and ketone flavour compounds[J]. International Journal of Food Science and Technology,2019,54(5):1787−1793. doi: 10.1111/ijfs.14079
    [18]
    SORIA A C, VILLAMIEL M. Effect of ultrasound on the technological properties and bioactivity of food: A review[J]. Trends in Food Science & Technology,2010,21(7):323−331.
    [19]
    HU X, WANG J Y, SUN L L, et al. Effects of pulsed ultrasound treatment on the physicochemical and textural properties of chicken myofibrillar protein gel[J]. Food Science and Technology International: 1−11. [2021-05-03]. https://doi.org/10.1177/10820132211011302.
    [20]
    AMADEO B B, POLLET J, CHEN W H, et al. A method to probe protein structure from UV absorbance spectra[J]. Analytical Biochemistry,2019,587:1−8.
    [21]
    常海霞. 超声波技术对草鱼肌原纤维蛋白营养和结构性质的影响[D]. 南昌: 南昌大学, 2015

    CHANG H X. Effects of ultrasonic pre-treatment on the nutrition and structural properties of grass carp myofibrillar protein[D]. Nanchang: Nanchang University, 2015.
    [22]
    KANG Z L, ZHANG X H, LI X, et al. The effects of sodium chloride on proteins aggregation, conformation and gel properties of pork myofibrillar protein: Relationship aggregation, conformation and gel properties[J]. Journal of Food Science and Technology-Mysore,2021,58(6):2258−2264. doi: 10.1007/s13197-020-04736-4
    [23]
    孙攀. 超声波处理对金枪鱼肌原纤维蛋白理化特性、结构和凝胶特性的影响[D]. 锦州: 渤海大学, 2019

    SUN P. Effects of ultrasonic treatment on physicochemical-chemical properties, structure and gel properties of tuna (Thunnus tonggol) myofibrillar protein[D]. Jinzhou: Bohai University, 2019.
    [24]
    LI K, KANG Z L, ZHAO Y Y, et al. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat[J]. Food and Bioprocess Technology,2014,7(12):3466−3477. doi: 10.1007/s11947-014-1358-y
    [25]
    JAMBRAK A R, MASON T J, LELAS V, et al. Effect of ultrasound treatment on particle size and molecular weight of whey proteins[J]. Journal of Food Engineering,2014,121:15−23. doi: 10.1016/j.jfoodeng.2013.08.012
    [26]
    HU H, LI-CHAN E C Y, WAN L, et al. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate[J]. Food Hydrocolloids,2013,32(2):303−311. doi: 10.1016/j.foodhyd.2013.01.016
    [27]
    KUHAR N, SIL S, UMAPATHY S. Potential of Raman spectroscopic techniques to study proteins[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2021,258:1−14.
    [28]
    LI Z Y, WANG J Y, ZHENG B D, et al. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates[J]. Ultrasonics Sonochemistry,2020,65:1−13.
    [29]
    WANG N, ZHOU X N, WANG W N, et al. Effect of high intensity ultrasound on the structure and solubility of soy protein isolate-pectin complex[J]. Ultrasonics Sonochemistry,2021,80:1−8.
    [30]
    YANG F, LIU X, REN X E, et al. Swirling cavitation improves the emulsifying properties of commercial soy protein isolate[J]. Ultrasonics Sonochemistry,2018,42:471−481. doi: 10.1016/j.ultsonch.2017.12.014
    [31]
    赵赣. 关于蛋白质二级结构α-螺旋中氢键构成的准确表述[J]. 生物学通报,2019,54(5):1−2. [ZHAO G. Discussion on predictive expression of H-bond formation in α-helix in the protein secondary structure doi: 10.3969/j.issn.0006-3193.2019.05.001

    J]. Bulletin of Biology,2019,54(5):1−2. doi: 10.3969/j.issn.0006-3193.2019.05.001
    [32]
    LI L Y, BAI Y, CAI R Y, et al. Alkaline pH-dependent thermal aggregation of chicken breast myosin: Formation of soluble aggregates[J]. Cyta-Journal of Food,2018,16(1):765−775. doi: 10.1080/19476337.2018.1470576
    [33]
    HU H, CHEUNG I W Y, PAN S, et al. Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean beta-conglycinin and glycinin[J]. Food Hydrocolloids,2015,45:102−110. doi: 10.1016/j.foodhyd.2014.11.004
    [34]
    CHANDRAPALA J, ZISU B, PALMER M, et al. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate[J]. Ultrasonics Sonochemistry,2011,18(5):951−957. doi: 10.1016/j.ultsonch.2010.12.016
    [35]
    DONG M, XU Y, ZHANG Y, et al. Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF)[J]. Innovative Food Science & Emerging Technologies,2020,59:1−9.
    [36]
    TIAN R, FENG J R, HUANG G, et al. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates[J]. Ultrasonics Sonochemistry,2020,68:1−8.
    [37]
    HAYAKAWA T, YOSHIDA Y, YASUI M, et al. Application of ultrasound in food science and technology: A perspective[J]. Journal of Food Science,2015,7(10):1641−1645.
    [38]
    MONTEJANO J G, HAMANN D D, LANIER T C. Thermally induced gelation of selected comminuted muscle systems-rheological changes during processing, final strengths and microstructure[J]. Journal of Food Science,1984,49(6):1496−1505. doi: 10.1111/j.1365-2621.1984.tb12830.x
    [39]
    EGELANDSDAL B, FRETHEIM K, SAMEJIMA K. Dynamic rheological measurements on heat-induced myosin gels-effect of ionic-strength, protein-concentration and addition of adenosine-triphosphate or pyrophosphate[J]. Journal of the Science of Food and Agriculture,1986,37(9):915−926. doi: 10.1002/jsfa.2740370914
  • Cited by

    Periodical cited type(17)

    1. 吕欣然,王淑娟,张丹,朱婷婷,孙翔宇,马婷婷. 不同剂量电子束辐照杀菌处理对黑果腺肋花楸果汁品质的影响. 食品科学. 2025(05): 272-280 .
    2. 兰天,赵沁雨,王家琪,孙翔宇,马婷婷. 益生菌发酵猕猴桃果汁的贮藏特性及货架期预测. 食品工业科技. 2024(05): 301-308 . 本站查看
    3. 张海军,李媛媛,钟祥静. 超高压灭菌技术在食品加工中的应用探讨. 粮油与饲料科技. 2024(02): 10-12 .
    4. 李媛媛,张海军,钟祥静. 基于超高压灭菌技术的农产品加工过程质量控制研究. 南方农机. 2024(17): 170-173 .
    5. 赵佳宇,易宗伟,蔡文超,马佳佳,王玉荣,单春会,郭壮. 动态超高压微射流技术对红枣酒品质的影响. 中国酿造. 2024(09): 147-151 .
    6. 程婧祺,秦雪,邱月,关宁,廖江,余志宝,裴晓燕,杨鑫焱,姜毓君,满朝新. 预测微生物学模型在乳及乳制品中的应用. 中国乳品工业. 2024(09): 50-55 .
    7. 张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,李璐. 不同打浆及杀菌处理对荔枝浆品质的影响. 食品工业科技. 2023(07): 329-336 . 本站查看
    8. 朱卫芳,黄兰淇,张颂函,马琳,陈建波,方朝阳. 25%吡唑醚菌酯悬浮剂在蓝莓中的残留行为及膳食风险评估. 农药科学与管理. 2023(01): 47-53 .
    9. 马琳,赵颖,陈建波,赵莉. 基于胶体金免疫层析法快速检测蓝莓中的百菌清残留. 农药学学报. 2023(02): 435-443 .
    10. 高惠颖,宋娟,景缘,于泳渤,张瑞,刘静,胡雨晴,吕长鑫,马志恒. NFC冻梨苹果汁配方优化及其贮藏品质. 食品研究与开发. 2023(11): 93-99 .
    11. 武正芳,马意龙,金诺,胡飞,章建国,魏兆军. 臭氧对食品加工中多酚影响的研究进展. 农产品加工. 2023(18): 79-82+92 .
    12. 赵倩,谢彦纯,赵冲. 百香果红茶饮料的研制. 中国果菜. 2023(12): 7-13 .
    13. 马琳,朱卫芳,占绣萍,陈建波,赵莉. 嘧霉胺在蓝莓中的残留行为及膳食风险评估. 农药学学报. 2022(04): 884-889 .
    14. 任博文,董璇,何珊. 超高压技术在食品应用中的研究进展. 农产品加工. 2022(16): 61-63+67 .
    15. 黄丽萍,靳学远,谭演清,陈涛,王华民. 超高压微射流处理对火龙果汁微生物指标及理化特性的影响. 食品安全质量检测学报. 2022(20): 6563-6568 .
    16. 宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .
    17. 张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,温靖,李璐. 枸杞原浆低氧打浆联合不同杀菌技术的比较分析. 现代食品科技. 2022(11): 158-165 .

    Other cited types(18)

Catalog

    Article Metrics

    Article views (224) PDF downloads (19) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return