FENG Jiawen, ZHENG Yunfang, ZHANG Fang, et al. Effect of Ultrasonic Treatment on the Structure and Functional Properties of Myofibrillar Protein in Sea Bass[J]. Science and Technology of Food Industry, 2022, 43(17): 95−103. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120027.
Citation: FENG Jiawen, ZHENG Yunfang, ZHANG Fang, et al. Effect of Ultrasonic Treatment on the Structure and Functional Properties of Myofibrillar Protein in Sea Bass[J]. Science and Technology of Food Industry, 2022, 43(17): 95−103. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120027.

Effect of Ultrasonic Treatment on the Structure and Functional Properties of Myofibrillar Protein in Sea Bass

More Information
  • Received Date: December 02, 2021
  • Available Online: July 02, 2022
  • In this paper, sea bass (Lateolabrax maculatus) were uesd as raw material to study the effect of ultrasound on the structure and functional properties of myofibrillar proteins in sea bass by the different ultrasonic power in the range of 0~540 W and time at 0~12 min. The results showed that, with the extension of the ultrasonic time and power, the sulfhydryl content of myofibrillar protein decreased, while the UV absorbance increased, and the α-helix content had a tendency to transform into β-sheets, β-turns and random coils. Ultrasound at 180~450 W, particle size and turbidity of myofibrillar protein were reduced, the solubility was improved. Ultrasonic treatment improved the rheological properties of myofibrillar and increased the G' and G" in the thermally induced gel process. Principal component and cluster analysis showed that different ultrasonic power and time had a greater impact on the physical and chemical properties of myofibrillar protein. These findings suggested that ultrasound altered the structure of myofibrillar proteins in sea bass, which affected rheological properties and contributed to better functional performance.
  • [1]
    陈大刚. 鲈鱼[J]. 水产科技情报,1976(10):29−30. [CHEN D G. Bass (Lateolabrax maculatus)[J]. Fisheries Science and Technology Information,1976(10):29−30.

    CHEN D G. Bass (Lateolabrax Maculatus)[J]. Fisheries Science and Technology Information, 1976, (10): 29-30.
    [2]
    CAI L, WU X, LI X, et al. Effects of different freezing treatments on physicochemical responses and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) fillets during refrigerated storage[J]. LWT-Food Science and Technology,2014,59(1):122−129. doi: 10.1016/j.lwt.2014.04.062
    [3]
    MIYAKE Y, ITAKURA H, TAKESHIGE A, et al. Multiple habitat use of Japanese sea bass Lateolabrax japonicus in the estuary region of the Tone River system, implied by stable isotope analysis[J]. Ichthyological Research,2019,66(1):172−176. doi: 10.1007/s10228-018-0655-2
    [4]
    PAN S, WU S. Effect of chitooligosaccharides on the denaturation of weever myofibrillar protein during frozen storage[J]. International Journal of Biological Macromolecules,2014(65):549−552.
    [5]
    LI P Y, PENG Y F, MEI J, et al. Effects of microencapsulated eugenol emulsions on microbiological, chemical and organoleptic qualities of farmed Japanese sea bass (Lateolabrax japonicus) during cold storage[J]. LWT-Food Science and Technology,2020,118:1−13.
    [6]
    DEMIR O, GUNLU A, KUCUK F, et al. Analysis of sarcoplamic proteins in natural populations of mountain trout (Salmotrutta macrostigma Dumeril, 1858) with SDS-PAGE[J]. African Journal of Biotechnology,2011,10(55):11758−11763.
    [7]
    XU Y, XU X. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):458−500. doi: 10.1111/1541-4337.12665
    [8]
    GUIMARAES J T, BALTHAZAR C F, SCUDINO H, et al. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products[J]. Ultrasonics Sonochemistry,2019,57:12−21. doi: 10.1016/j.ultsonch.2019.05.004
    [9]
    AMIRI A, SHARIFIAN P, SOLTANIZADEH N. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins[J]. International Journal of Biological Macromolecules,2018,111:139−147. doi: 10.1016/j.ijbiomac.2017.12.167
    [10]
    LI K, FU L, ZHAO Y Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids,2020,98:1−11.
    [11]
    PARK D, XIONG Y L, ALDERTON A L, et al. Biochemical changes in myofibrillar protein isolates exposed to three oxidizing systems[J]. Journal of Agricultural and Food Chemistry,2006,54(12):4445−4451. doi: 10.1021/jf0531813
    [12]
    PHATCHARAT S, BENJAKUL S, VISESSANGUAN W. Effects of washing with oxidising agents on the gel-forming ability and physicochemical properties of surimi produced from bigeye snapper (Priacanthus tayenus)[J]. Food Chemistry,2006,98(3):431−439. doi: 10.1016/j.foodchem.2005.06.016
    [13]
    WANG Y, ZHOU Y, LI P J, et al. Combined effect of CaCl2 and high pressure processing on the solubility of chicken breast myofibrillar proteins under sodium-reduced conditions[J]. Food Chemistry,2018,269:236−243. doi: 10.1016/j.foodchem.2018.06.107
    [14]
    韩敏义, 徐幸莲, 林丽军, 等. 兔骨骼肌肌球蛋白的纯化及溶液浊度和溶解度研究[J]. 食品科学,2004(12):50−54. [HAN M Y, XUN X L, LIN L J, et al. Purification of rabbit skeletal muscle myosin and study on turbidity and solubility of solution[J]. Food Science,2004(12):50−54. doi: 10.3321/j.issn:1002-6630.2004.12.006

    HAN M Y, XUN X L, LIN L J, et al. Purification of rabbit skeletal muscle myosin and study on turbidity and solubility of solution[J]. Food Science, 2004, (12): 50-54. doi: 10.3321/j.issn:1002-6630.2004.12.006
    [15]
    GUO X Y, PENG Z Q, ZHANG Y W, et al. The solubility and conformational characteristics of porcine myosin as affected by the presence of L-lysine and L-histidine[J]. Food Chemistry,2015,170:212−217. doi: 10.1016/j.foodchem.2014.08.045
    [16]
    ZHANG Z, REGENSTEIN J M, ZHOU P, et al. Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel[J]. Ultrasonics Sonochemistry,2017,34:960−967. doi: 10.1016/j.ultsonch.2016.08.008
    [17]
    HAN Z, CAI M J, CHENG J H, et al. Effects of microwave and water bath heating on the interactions between myofibrillar protein from beef and ketone flavour compounds[J]. International Journal of Food Science and Technology,2019,54(5):1787−1793. doi: 10.1111/ijfs.14079
    [18]
    SORIA A C, VILLAMIEL M. Effect of ultrasound on the technological properties and bioactivity of food: A review[J]. Trends in Food Science & Technology,2010,21(7):323−331.
    [19]
    HU X, WANG J Y, SUN L L, et al. Effects of pulsed ultrasound treatment on the physicochemical and textural properties of chicken myofibrillar protein gel[J]. Food Science and Technology International: 1−11. [2021-05-03]. https://doi.org/10.1177/10820132211011302.
    [20]
    AMADEO B B, POLLET J, CHEN W H, et al. A method to probe protein structure from UV absorbance spectra[J]. Analytical Biochemistry,2019,587:1−8.
    [21]
    常海霞. 超声波技术对草鱼肌原纤维蛋白营养和结构性质的影响[D]. 南昌: 南昌大学, 2015

    CHANG H X. Effects of ultrasonic pre-treatment on the nutrition and structural properties of grass carp myofibrillar protein[D]. Nanchang: Nanchang University, 2015.
    [22]
    KANG Z L, ZHANG X H, LI X, et al. The effects of sodium chloride on proteins aggregation, conformation and gel properties of pork myofibrillar protein: Relationship aggregation, conformation and gel properties[J]. Journal of Food Science and Technology-Mysore,2021,58(6):2258−2264. doi: 10.1007/s13197-020-04736-4
    [23]
    孙攀. 超声波处理对金枪鱼肌原纤维蛋白理化特性、结构和凝胶特性的影响[D]. 锦州: 渤海大学, 2019

    SUN P. Effects of ultrasonic treatment on physicochemical-chemical properties, structure and gel properties of tuna (Thunnus tonggol) myofibrillar protein[D]. Jinzhou: Bohai University, 2019.
    [24]
    LI K, KANG Z L, ZHAO Y Y, et al. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat[J]. Food and Bioprocess Technology,2014,7(12):3466−3477. doi: 10.1007/s11947-014-1358-y
    [25]
    JAMBRAK A R, MASON T J, LELAS V, et al. Effect of ultrasound treatment on particle size and molecular weight of whey proteins[J]. Journal of Food Engineering,2014,121:15−23. doi: 10.1016/j.jfoodeng.2013.08.012
    [26]
    HU H, LI-CHAN E C Y, WAN L, et al. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate[J]. Food Hydrocolloids,2013,32(2):303−311. doi: 10.1016/j.foodhyd.2013.01.016
    [27]
    KUHAR N, SIL S, UMAPATHY S. Potential of Raman spectroscopic techniques to study proteins[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2021,258:1−14.
    [28]
    LI Z Y, WANG J Y, ZHENG B D, et al. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates[J]. Ultrasonics Sonochemistry,2020,65:1−13.
    [29]
    WANG N, ZHOU X N, WANG W N, et al. Effect of high intensity ultrasound on the structure and solubility of soy protein isolate-pectin complex[J]. Ultrasonics Sonochemistry,2021,80:1−8.
    [30]
    YANG F, LIU X, REN X E, et al. Swirling cavitation improves the emulsifying properties of commercial soy protein isolate[J]. Ultrasonics Sonochemistry,2018,42:471−481. doi: 10.1016/j.ultsonch.2017.12.014
    [31]
    赵赣. 关于蛋白质二级结构α-螺旋中氢键构成的准确表述[J]. 生物学通报,2019,54(5):1−2. [ZHAO G. Discussion on predictive expression of H-bond formation in α-helix in the protein secondary structure doi: 10.3969/j.issn.0006-3193.2019.05.001

    J]. Bulletin of Biology,2019,54(5):1−2. doi: 10.3969/j.issn.0006-3193.2019.05.001
    [32]
    LI L Y, BAI Y, CAI R Y, et al. Alkaline pH-dependent thermal aggregation of chicken breast myosin: Formation of soluble aggregates[J]. Cyta-Journal of Food,2018,16(1):765−775. doi: 10.1080/19476337.2018.1470576
    [33]
    HU H, CHEUNG I W Y, PAN S, et al. Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean beta-conglycinin and glycinin[J]. Food Hydrocolloids,2015,45:102−110. doi: 10.1016/j.foodhyd.2014.11.004
    [34]
    CHANDRAPALA J, ZISU B, PALMER M, et al. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate[J]. Ultrasonics Sonochemistry,2011,18(5):951−957. doi: 10.1016/j.ultsonch.2010.12.016
    [35]
    DONG M, XU Y, ZHANG Y, et al. Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF)[J]. Innovative Food Science & Emerging Technologies,2020,59:1−9.
    [36]
    TIAN R, FENG J R, HUANG G, et al. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates[J]. Ultrasonics Sonochemistry,2020,68:1−8.
    [37]
    HAYAKAWA T, YOSHIDA Y, YASUI M, et al. Application of ultrasound in food science and technology: A perspective[J]. Journal of Food Science,2015,7(10):1641−1645.
    [38]
    MONTEJANO J G, HAMANN D D, LANIER T C. Thermally induced gelation of selected comminuted muscle systems-rheological changes during processing, final strengths and microstructure[J]. Journal of Food Science,1984,49(6):1496−1505. doi: 10.1111/j.1365-2621.1984.tb12830.x
    [39]
    EGELANDSDAL B, FRETHEIM K, SAMEJIMA K. Dynamic rheological measurements on heat-induced myosin gels-effect of ionic-strength, protein-concentration and addition of adenosine-triphosphate or pyrophosphate[J]. Journal of the Science of Food and Agriculture,1986,37(9):915−926. doi: 10.1002/jsfa.2740370914
  • Cited by

    Periodical cited type(10)

    1. 舒丽枝,时苗苗,张牧焓,卞欢,徐为民,王道营. 卟啉类化合物和游离铁对鸡胸肉肌原纤维蛋白理化特性的影响. 江苏农业学报. 2024(10): 1952-1961 .
    2. 王晓芸,高霞,尤娟,尹涛,刘茹. 超声预处理对鲜湿鱼粉品质的影响及其作用机制. 食品科学. 2024(23): 213-220 .
    3. 韩馨蕊,李颖,刘苗苗,范鑫,冯莉,曹云刚. 安石榴苷与焦磷酸钠对肌原纤维蛋白氧化稳定性及凝胶性能的影响. 食品科学. 2022(08): 15-21 .
    4. 莫玲,香庆文,李晶晶,叶玉萍,赵超超. 孕哺期摄入氧化乳蛋白对子代小鼠机体氧化还原状态的影响. 食品科学技术学报. 2021(03): 122-128 .
    5. 梁恽红,卢涵,张香美. 蛋白二、三级结构对鱼糜凝胶质构和持水力的影响及其测定方法研究进展. 东北农业大学学报. 2021(10): 87-96 .
    6. 谢晨,熊泽语,李慧,金素莱曼,陈百科,包海蓉. 金针菇多糖对三文鱼片冻藏期间品质的影响. 食品与发酵工业. 2021(22): 178-183 .
    7. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    8. 冯程,Manonose Tariro Upenyu,李志豪,王萍,余雄伟,付琴利,李述刚. 丙烯醛对籽瓜种仁蛋白质结构及凝胶特性影响研究. 食品科技. 2019(09): 66-71 .
    9. 刁小琴,关海宁,李杨,刘丽美. 高压均质对肌原纤维蛋白乳化特性及结构的影响. 食品与发酵工业. 2019(18): 107-112 .
    10. 郭兆斌,马纪兵,张丽,陈骋,陈立业,刘勇,韩玲,余群力. 传统风干牦牛肉加工过程中肌原纤维蛋白氧化对氨基酸的影响. 食品与发酵工业. 2019(22): 202-207+212 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (224) PDF downloads (19) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return