Citation: | YU Yongshi, LIU Hui. Research Progress on CRISPR-Cas9 Technology to Modify Lactobacillus[J]. Science and Technology of Food Industry, 2022, 43(21): 461−470. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110333. |
[1] |
PAUL A K, PAUL A, JAHAN R, et al. Probiotics and amelioration of rheumatoid arthritis: Significant roles of Lactobacillus casei and Lactobacillus acidophilus[J]. Microorganisms,2021,9(5):1070. doi: 10.3390/microorganisms9051070
|
[2] |
STEINER N C, LORENTZ A. Probiotic potential of Lactobacillus species in allergic rhinitis[J]. International Archives of Allergy and Immunology,2021,182(9):807−818. doi: 10.1159/000515352
|
[3] |
刘培琴, 韦婷. 浅谈转基因食品安全问题及管理模式[J]. 现代食品,2019(21):154−156. [LIU P Q, WEI T. The safety problem and management mode of genetically modified food[J]. Modern Food,2019(21):154−156. doi: 10.16736/j.cnki.cn41-1434/ts.2019.21.049
|
[4] |
闫洪波, 高艳丽, 孙世卫, 等. CRISPR/Cas系统在植物抗病毒中的应用[J]. 草业科学,2019,36(5):1405−1414. [YAN H B, GAO Y L, SUN S W, et al. Application of CRISPR/Cas system in anti-plant virus research[J]. Pratacultural Science,2019,36(5):1405−1414.
|
[5] |
WANG T, ZHANG H, ZHU H. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops[J]. Horticulture Research,2019,6(1):781−793.
|
[6] |
JOHANSEN E. Future access and improvement of industrial lactic acid bacteria cultures[J]. Microbial Cell Factories,2017,16(1):230. doi: 10.1186/s12934-017-0851-1
|
[7] |
AGRIOPOULOU S, STAMATELOPOULOU E, SACHADYN-KRÓL M, et al. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects[J]. Microorganisms,2020,8(6):952. doi: 10.3390/microorganisms8060952
|
[8] |
BEHERA S S, RAY R C, ZDOLEC N. Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods[J]. BioMed Research International,2018,2018:1−18.
|
[9] |
SALVETTI E, TORRIANI S, FELIS G E. The genus Lactobacillus: A taxonomic update[J]. Probiotics and Antimicrobial Proteins,2012,4(4):217−226. doi: 10.1007/s12602-012-9117-8
|
[10] |
SUN Z, HARRIS H M B, MCCANN A, et al. Expanding the biotechnology potential of Lactobacilli through comparative genomics of 213 strains and associated genera[J]. Nature Communications,2015,6:8322. doi: 10.1038/ncomms9322
|
[11] |
DI CERBO A, PALMIERI B, APONTE M, et al. Mechanisms and therapeutic effectiveness of Lactobacilli[J]. Journal of Clinical Pathology,2016,69(3):187−203. doi: 10.1136/jclinpath-2015-202976
|
[12] |
陈丽华. 乳酸杆菌对ApoE(-/-)小鼠动脉粥样硬化形成的影响及机制研究[D]. 长沙:中南大学, 2013.
CHEN L H. Study on suppressed effect of Lactobacilli on atherogenesis in ApoE (-/-) mice and its mechanism[D]. Changsha: Central South University, 2013.
|
[13] |
ABDEL-DAIM A, HASSOUNA N, HAFEZ M, et al. Antagonistic activity of Lactobacillus isolates against salmonella typhi in vitro[J]. BioMed Research International,2013,2013:680605.
|
[14] |
PRABHURAJESHWAR C, CHANDRAKANTH R K. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances[J]. Biomedical Journal,2017,40(5):270−283. doi: 10.1016/j.bj.2017.06.008
|
[15] |
MU Q, TAVELLA V J, LUO X M. Role of Lactobacillus reuteri in human health and diseases[J]. Frontiers in Microbiology,2018,9(APR):1−17.
|
[16] |
SZILAGYI A, ISHAYEK N. Lactose intolerance, dairy avoidance, and treatment options[J]. Nutrients,2018,10(12):1994. doi: 10.3390/nu10121994
|
[17] |
祁敏. 应用CRISPR-Cas9技术在植物乳杆菌中进行基因编辑的研究[D]. 南京:南京师范大学, 2019.
QI M. Study of a gene editing technique-CRISPR/Cas9 in Lactobacillus plantarum[D]. Nanjing: Nanjing Normal University, 2019.
|
[18] |
PASOLLI E, DE FILIPPIS F, MAURIELLO I E, et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome[J]. Nature Communications,2020,11(1):1−12. doi: 10.1038/s41467-019-13993-7
|
[19] |
BRADSHAW M J, BHATTACHARYYA S, VENNA N, et al. Neurologic manifestations of systemic rheumatologic diseases[Z](2020).
|
[20] |
JANG H R, PARK H J, KANG D, et al. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption[J]. Experimental and Molecular Medicine,2019,51(8):1−14.
|
[21] |
DAN T, REN W, LIU Y, et al. Volatile flavor compounds profile and fermentation characteristics of milk fermented by Lactobacillus delbrueckii subsp. bulgaricus[J]. Frontiers in Microbiology,2019,10(September):2183.
|
[22] |
唐立伟, 李想, 左晨旭, 等. 乳杆菌在发酵乳饮料中的应用[J]. 工业微生物,2020,50(1):44−48. [TANG L W, LI X, ZUO C X, et al. Application of Lactobacillus in fermented milk beverage[J]. Industrial Microbiology,2020,50(1):44−48. doi: 10.3969/j.issn.1001-6678.2020.01.008
|
[23] |
WANG J, ISHFAQ M, GUO Y, et al. Assessment of probiotic properties of Lactobacillus salivarius isolated from chickens as feed additives[J]. Frontiers in Veterinary Science,2020,7(7):415.
|
[24] |
卢兆芸, 陈海婴, 彭冬英, 等. 保加利亚乳杆菌和嗜热链球菌发酵紫红薯酸牛奶[J]. 中国乳品工业,2011,39(12):39−40. [LU Z Y, CHEN H Y, PENG D Y, et al. Purple sweet potatoes yoghurt fermented by Lactobacillus bulgaricus and Streptococcus thermophilus[J]. China Dairy Industry,2011,39(12):39−40. doi: 10.3969/j.issn.1001-2230.2011.12.011
|
[25] |
常曼曼, 李颖, 阴芳冉, 等. 保加利亚乳杆菌LB—DR发酵红树莓汁的特性及代谢产物研究[J]. 林业与生态科学,2018,33(4):408−414,428. [CHANG M M, LI Y, YIN F R, et al. Characteristics and metabolites of red raspberry juice fermentedby Lactobacillus bullgaricus LB-DR[J]. Forestry and Ecological Sciences,2018,33(4):408−414,428.
|
[26] |
马蕊, 王鑫, 韩春然, 等. 嗜酸乳杆菌对蓝靛果汁降酸效果的研究[J]. 包装工程,2019,40(17):27−32. [MA R, WANG X, HAN C R, et al. Effect of Lactobacillus acidophilus on acid reduction of Lonicera caerulea L. juice[J]. Packaging Engineering,2019,40(17):27−32. doi: 10.19554/j.cnki.1001-3563.2019.17.005
|
[27] |
谢雨婷, 宋明慧, 马毛毛, 等. 响应面法提高植物乳酸茵和嗜酸乳杆菌发酵椰奶的活菌数[J]. 食品与发酵工业,2019,45(7):207−212. [XIE Y T, SONG M H, MA M M, et al. Response surface methodology for optimization of coconut milk beverage's viable count fermented by Lactobacillus acidophilus and Lactobacillus plantarum[J]. Food and Fermentation Industries,2019,45(7):207−212.
|
[28] |
NAVEED A, 陈则华, 李理, 等. 乳酸菌发酵制备大豆奶酪豆坯的工艺研究[J]. 食品与机械,2008(6):121−126. [NAVEED A, CHEN Z H, LI L, et al. Preparation of pehtze with suitable texture and flavor aspects for soy cheese production by using three Lactobacillus cultures[J]. Food & Machinery,2008(6):121−126. doi: 10.13652/j.issn.1003-5788.2008.06.019
|
[29] |
罗其琪, 顾丰颖, 曹晶晶, 等. 鼠李糖乳杆菌发酵对玉米粉、玉米面团 理化特性及发糕品质的影响[J]. 食品科学,2018,39(18):1−7. [LUO Q Q, GU F Y, CAO J J, et al. Effects of Lactobacillus rhamnosus fermentation on the physicochemical properties of corn flour and corn dough and the quality of steamed sponge cake[J]. Food Science,2018,39(18):1−7. doi: 10.7506/spkx1002-6630-201818001
|
[30] |
李小妮, 于立梅, 曾晓房, 等. 干酪乳杆菌和植物乳杆菌对广式腊肠品质的影响[J]. 中国调味品,2020,45(8):31−34. [LI X N, YU L M, ZENG X F, et al. Effects of Lactobacillus casei and Lactobacillus plantarum on the quality of cantonese sausage[J]. China Condiment,2020,45(8):31−34. doi: 10.3969/j.issn.1000-9973.2020.08.007
|
[31] |
白雪菲, 金刚, 刘思, 等. 低温条件下希氏乳杆菌Q19苹果酸-乳酸发酵特性及其对葡萄酒香气成分的影响[J]. 食品科学,2020,41(18):146−152. [BAI X F, JIN G, LIU S, et al. Malolactic fermentation characteristics of Lactobacillus hilgardii Q19 at low temperature and its effect on aroma components in wine[J]. Food Science,2020,41(18):146−152. doi: 10.7506/spkx1002-6630-20190805-053
|
[32] |
刘晓辉, 陈顺, 李扬, 等. 人工接种副干酪乳杆菌生产L乳酸酸菜条件的研究[J]. 中国调味品,2020,45(9):91−94. [LIU X H, CHEN S, LI Y, et al. Study on the conditions for production L-lactic acid fermented vegetables by artificial inoculation of Lactobacillus parcases[J]. China Condiment,2020,45(9):91−94.
|
[33] |
ZHANG H X, ZHANG Y, YIN H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9[J]. Molecular Therapy,2019,27(4):735−746. doi: 10.1016/j.ymthe.2019.01.014
|
[34] |
GAJ T, GERSBACH C A, BARBAS C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology,2013,31(7):397−405. doi: 10.1016/j.tibtech.2013.04.004
|
[35] |
GUPTA D, BHATTACHARJEE O, MANDAL D, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing[J]. Life Sciences,2019,232(April):116636.
|
[36] |
ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology,1987,169(12):5429−5433. doi: 10.1128/jb.169.12.5429-5433.1987
|
[37] |
MOJICA F J M, DÍEZ-VILLASEÑOR C, SORIA E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria[J]. Molecular Microbiology,2000,36(1):244−246. doi: 10.1046/j.1365-2958.2000.01838.x
|
[38] |
RODRÍGUEZ-RODRÍGUEZ D R, RAMÍREZ-SOLÍS R, GARZA-ELIZONDO M A, et al. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (review)[J]. International Journal of Molecular Medicine,2019,43(4):1559−1574.
|
[39] |
JANSEN R, VAN EMBDEN J D A, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology,2002,43(6):1565−1575. doi: 10.1046/j.1365-2958.2002.02839.x
|
[40] |
MOJICA F J M, DÍEZ-VILLASEÑOR C, GARCÍA-MARTÍNEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution,2005,60(2):174−182. doi: 10.1007/s00239-004-0046-3
|
[41] |
POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology,2005,151(3):653−663. doi: 10.1099/mic.0.27437-0
|
[42] |
BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science,2007,315(5819):1709−1712. doi: 10.1126/science.1138140
|
[43] |
BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology,2005,151(8):2551−2561. doi: 10.1099/mic.0.28048-0
|
[44] |
MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nature Reviews Microbiology,2011,9(6):467−477. doi: 10.1038/nrmicro2577
|
[45] |
ALMENDROS C, GUZMÁN N M, DÍEZ-VILLASEÑOR C, et al. Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli[J]. PLoS ONE,2012,7(11):e50797. doi: 10.1371/journal.pone.0050797
|
[46] |
DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature,2011,471(7340):602−607. doi: 10.1038/nature09886
|
[47] |
GARNEAU J E, DUPUIS M È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature,2010,468(7320):67−71. doi: 10.1038/nature09523
|
[48] |
MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science,2008,322(5909):1843−1845. doi: 10.1126/science.1165771
|
[49] |
BROUNS S J, JORE M M, LUNDGREN M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science,2008,321(5891):960−964. doi: 10.1126/science.1159689
|
[50] |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816−821. doi: 10.1126/science.1225829
|
[51] |
CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science (New York, N Y),2013,339(6121):819−823. doi: 10.1126/science.1231143
|
[52] |
WADHWA V. Boost visas for foreign entrepreneurs[J]. Nature,2017,543(7643):29−31. doi: 10.1038/543029a
|
[53] |
CHEN F, DING X, FENG Y, et al. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting[J]. Nature Communications,2017,8:14958. doi: 10.1038/ncomms14958
|
[54] |
SRIRAMULU D D, LIANG M, HERNANDEZ-ROMERO D, et al. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1, 2-propanediol by disproportionation[J]. Journal of Bacteriology,2008,190(13):4559−4567. doi: 10.1128/JB.01535-07
|
[55] |
BOSMA E F, FORSTER J, NIELSEN A T. Lactobacilli and Pediococci as versatile cell factories-evaluation of strain properties and genetic tools[J]. Biotechnology Advances,2017,35(4):419−442. doi: 10.1016/j.biotechadv.2017.04.002
|
[56] |
GOH Y J, LEE J, HUTKINS R W, et al. Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195 functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195[J]. Appl Environ Microbiol, 2007, 73(18): 5716-5724.
|
[57] |
HIDALGO-CANTABRANA C, O’FLAHERTY S, BARRANGOU R. CRISPR-based engineering of next-generation lactic acid bacteria[J]. Current Opinion in Microbiology,2017,37:79−87. doi: 10.1016/j.mib.2017.05.015
|
[58] |
VALERIO F, BAVARO A R, DI B M, et al. Effect of amaranth and quinoa flours on exopolysaccharide production and protein profile of liquid sourdough fermented by Weissella cibaria and Lactobacillus plantarum[J]. Frontiers in Microbiology,2020,11(May):967.
|
[59] |
SONG X, HUANG H, XIONG Z, et al. CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei[J]. Applied and Environmental Microbiology,2017,83(22):e01259−17.
|
[60] |
MAYER M J, D’AMATO A, COLQUHOUN I J, et al. Identification of genes required for glucan exopolysaccharide production in Lactobacillus johnsonii suggests a novel biosynthesis mechanism[J]. Applied and Environmental Microbiology,2020,86(8):e02808−19.
|
[61] |
DERTLI E, MAYER M J, COLQUHOUN I J, et al. EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785[J]. Microbial Biotechnology,2016,9(4):496−501. doi: 10.1111/1751-7915.12314
|
[62] |
ZHOU D, JIANG Z, PANG Q, et al. CRISPR/Cas9-assisted seamless genome editing in Lactobacillus plantarum and its application in N-acetylglucosamine production[J]. Applied and Environmental Microbiology,2019,85(21):e01367−19.
|
[63] |
DATO L, BERTERAME N M, RICCI M A, et al. Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae[J]. Microbial Cell Factories,2014,13:147.
|
[64] |
汪雪莲, 於钊庆, 朱 莉, 等. 毛细管电泳法同时测定发酵制品中D-乳酸和L-乳酸含量[J]. 化学与生物工程,2017,34(9):64−67. [WANG X L, YU Z Q, ZHU L, et al. Simultaneous determination of D- and L-lactic acids by capillary electrophoresis[J]. Chemistry & Bioengineering,2017,34(9):64−67. doi: 10.3969/j.issn.1672-5425.2017.09.014
|
[65] |
POHANKA M. D-lactic acid as a metabolite: Toxicology, diagnosis, and detection[J]. BioMed Research International,2020,2020(2):3419034.
|
[66] |
SUN L, ZHANG C, LYU P, et al. Contributory roles of two L-lactate dehydrogenases for L-lactic acid production in thermotolerant bacillus coagulans[J]. Scientific Reports,2016,6(November):37916.
|
[67] |
张一凡. 基于CRISPR_Cas9平台构建拟干酪乳杆菌高效生产L-乳酸生产菌株及其代谢分析研究[D]. 上海: 华东理工大学, 2020.
ZHANG Y F. Construction of Lactobacillus paracasei strain for efficient production of high-quality L-lactic acid based on CRISPR/Cas9 platform and its metabolic analysis[D]. Shanghai: East China University of Science and Technology, 2020.
|
[68] |
HUANG Y, YOU C, LIU Z. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production[J]. 3 Biotech,2017,7(3):194. doi: 10.1007/s13205-017-0822-6
|
[69] |
ASSAVASIRIJINDA N, GE D, YU B, et al. Efficient fermentative production of polymer-grade D-lactate by an engineered Alkaliphilic bacillus sp. strain under non-sterile conditions[J]. Microbial Cell Factories,2016,15:3. doi: 10.1186/s12934-015-0408-0
|
[70] |
OZAKI A, KONISHI R, OTOMO C, et al. Metabolic engineering of schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose[J]. Metabolic Engineering Communications,2017,5(August):60−67.
|
[71] |
PLAVEC T V, BERLEC A. Safety aspects of genetically modified lactic acid bacteria[J]. Microorganisms,2020,8(2):297. doi: 10.3390/microorganisms8020297
|
[72] |
KARABIYIK G. Milestones of CRISPR/Cas9 system, promises and roadblocks[J]. Cancer Treatment and Research Communications,2021,26:100304. doi: 10.1016/j.ctarc.2021.100304
|
[73] |
JAVED M R, SADAF M, AHMED T, et al. CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms[J]. Current Microbiology,2018,75(12):1675−1683. doi: 10.1007/s00284-018-1547-4
|
[74] |
BURGIO G, TEBOUL L. Anticipating and identifying collateral damage in genome editing[J]. Trends in Genetics,2020,36(12):905−914. doi: 10.1016/j.tig.2020.09.011
|
[75] |
GOH Y J, BARRANGOU R. Portable CRISPR-Cas9N system for flexible genome engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei[J]. Aem,2021,87(6):e02669−20.
|
[76] |
AQUINO-JARQUIN G. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing[J]. Molecular Genetics and Metabolism, 2021, 134(1–2): 77–86.
|
[77] |
LEENAY R T, VENTO J M, SHAH M, et al. Genome editing with CRISPR-Cas9 in Lactobacillus plantarum revealed that editing outcomes can vary across strains and between methods[J]. Biotechnology Journal,2019,14(3):e1700583. doi: 10.1002/biot.201700583
|
[78] |
GUAN N, LIU L. Microbial response to acid stress: Mechanisms and applications[J]. Applied Microbiology and Biotechnology,2020,104(1):51−65. doi: 10.1007/s00253-019-10226-1
|
[79] |
GONG L, REN C, XU Y. Deciphering the crucial roles of transcriptional regulator GadR on gamma-aminobutyric acid production and acid resistance in Lactobacillus brevis[J]. Microbial Cell Factories,2019,18(1):108. doi: 10.1186/s12934-019-1157-2
|
[80] |
GONG L, REN C, XU Y. GlnR negatively regulates glutamate-dependent acid resistance in Lactobacillus brevis[J]. Appl Environ Microbiol,2020,86(7):e02615−19.
|
[81] |
RUSSO P, DLLM M, CAPOZZI V, et al. Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions[J]. International Journal of Molecular Sciences,2012,13(9):10680−10696. doi: 10.3390/ijms130910680
|
[82] |
CHASTANET A, FERT J, MSADEK T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other gram-positive bacteria[J]. Molecular Microbiology,2003,47(4):1061−1073. doi: 10.1046/j.1365-2958.2003.03355.x
|
[83] |
DESMOND C, FITZGERALD G F, STANTON C, et al. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338[J]. Applied and Environmental Microbiology,2004,70(10):5929−5936. doi: 10.1128/AEM.70.10.5929-5936.2004
|
[84] |
ALVAREZ-SIEIRO P, MONTALBÁN-LÓPEZ M, MU D, et al. Bacteriocins of lactic acid bacteria: Extending the family[J]. Applied Microbiology and Biotechnology,2016,100(7):2939−2951. doi: 10.1007/s00253-016-7343-9
|
[85] |
ZIMINA M, BABICH O, PROSEKOV A, et al. Overview of global trends in classification, methods of preparation and application of bacteriocins[J]. Antibiotics,2020,9(9):1−21.
|
[86] |
DJENANE D, ABOUDAOU M, DJENANE F, et al. Improvement of the shelf-life status of modified atmosphere packaged camel meat using nisin and Olea europaea subsp. laperrinei leaf extract[J]. Foods,2020,9(9):1336. doi: 10.3390/foods9091336
|
[87] |
REINERS J, LAGEDROSTE M, GOTTSTEIN J, et al. Insights in the antimicrobial potential of the natural nisin variant nisin H[J]. Frontiers in Microbiology,2020,11(October):573614.
|
[88] |
O’SULLIVAN J N, O’CONNOR P M, REA M C, et al. Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota[J]. Journal of Bacteriology,2020,202(3):e00639−19.
|
[89] |
OH J H, VAN PIJKEREN J P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri[J]. Nucleic Acids Research,2014,42(17):e131. doi: 10.1093/nar/gku623
|
[90] |
VAN PIJKEREN J P, NEOH K M, SIRIAS D, et al. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri[J]. Bioengineered,2012,3(4):209−217. doi: 10.4161/bioe.21049
|
[91] |
STEIDLER L, HANS W, SCHOTTE L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10[J]. Science,2000,289(5483):1352−1355. doi: 10.1126/science.289.5483.1352
|
[92] |
WANG R, JIANG L, ZHANG M, et al. The adhesion of Lactobacillus salivarius REN to a human intestinal epithelial cell line requires S-layer proteins[J]. Scientific Reports, 2017, 7 (September 2016): 44029.
|
[93] |
VON KÜGELGEN A, TANG H, HARDY G G, et al. In situ structure of an intact lipopolysaccharide-bound bacterial surface layer[J]. Cell,2020,180(2):348−358. doi: 10.1016/j.cell.2019.12.006
|
[94] |
FAGAN R P, FAIRWEATHER N F. Biogenesis and functions of bacterial S-layers[J]. Nature Reviews Microbiology,2014,12(3):211−222. doi: 10.1038/nrmicro3213
|
[95] |
SCHETTERS S T T, KRUIJSSEN L J W, CROMMENTUIJN M H W, et al. Mouse DC-SIGN/CD209a as target for antigen delivery and adaptive immunity[J]. Frontiers in Immunology,2018,9(MAY):990.
|
[96] |
LIGHTFOOT Y L, SELLE K, YANG T, et al. SIGNR 3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis[J]. The EMBO Journal,2015,34(7):881−895. doi: 10.15252/embj.201490296
|
[97] |
JOHNSON B R, O’FLAHERTY S, GOH Y J, et al. The S-layer associated serine protease homolog prtX impacts cell surface-mediated microbe-host interactions of Lactobacillus acidophilus NCFM[J]. Frontiers in Microbiology,2017,8(JUN):1185.
|
[98] |
UROIĆ K, NOVAK J, HYNÖNEN U, et al. The role of s-layer in adhesive and immunomodulating properties of probiotic starter culture Lactobacillus brevis D6 isolated from artisanal smoked fresh cheese[J]. LWT-Food Science and Technology,2016,69:623−632. doi: 10.1016/j.lwt.2016.02.013
|
[99] |
DO CARMO F L R, RABAH H, DE OLIVEIRA CARVALHO R D, et al. Extractable bacterial surface proteins in probiotic-host interaction[J]. Frontiers in Microbiology,2018,9(APR):645.
|
1. |
韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 .
![]() | |
2. |
邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
![]() | |
3. |
刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 .
![]() | |
4. |
马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
![]() | |
5. |
赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
![]() | |
6. |
周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
![]() | |
7. |
渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 .
![]() | |
8. |
靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .
![]() |