YU Yongshi, LIU Hui. Research Progress on CRISPR-Cas9 Technology to Modify Lactobacillus[J]. Science and Technology of Food Industry, 2022, 43(21): 461−470. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110333.
Citation: YU Yongshi, LIU Hui. Research Progress on CRISPR-Cas9 Technology to Modify Lactobacillus[J]. Science and Technology of Food Industry, 2022, 43(21): 461−470. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110333.

Research Progress on CRISPR-Cas9 Technology to Modify Lactobacillus

More Information
  • Received Date: November 25, 2021
  • Available Online: August 24, 2022
  • Lactobacillus is a strain that promotes human health and has a long history of use in the food industry. In recent years, gene editing technology has become an effective tool for the development and utilization of microorganisms. Among them, CRISPR-Cas9 technology that composed of clustered regularly interspaced short palindromic repeats and its associated protein has been widely used in gene editing research due to its advantages of simple steps, high efficiency and accuracy. The application of CRISPR-Cas9 technology to Lactobacillus will promote the research of its own physiological characteristics and the molecular mechanism of promoting human health, thereby promoting the development of the next generation of Lactobacillus with customized functions. This article reviews the application of some Lactobacillus in food processing and the application progress of CRISPR-Cas9 technology in Lactobacillus, aiming to provide some ideas for the research and development of domestic Lactobacillus bioengineering.
  • [1]
    PAUL A K, PAUL A, JAHAN R, et al. Probiotics and amelioration of rheumatoid arthritis: Significant roles of Lactobacillus casei and Lactobacillus acidophilus[J]. Microorganisms,2021,9(5):1070. doi: 10.3390/microorganisms9051070
    [2]
    STEINER N C, LORENTZ A. Probiotic potential of Lactobacillus species in allergic rhinitis[J]. International Archives of Allergy and Immunology,2021,182(9):807−818. doi: 10.1159/000515352
    [3]
    刘培琴, 韦婷. 浅谈转基因食品安全问题及管理模式[J]. 现代食品,2019(21):154−156. [LIU P Q, WEI T. The safety problem and management mode of genetically modified food[J]. Modern Food,2019(21):154−156. doi: 10.16736/j.cnki.cn41-1434/ts.2019.21.049
    [4]
    闫洪波, 高艳丽, 孙世卫, 等. CRISPR/Cas系统在植物抗病毒中的应用[J]. 草业科学,2019,36(5):1405−1414. [YAN H B, GAO Y L, SUN S W, et al. Application of CRISPR/Cas system in anti-plant virus research[J]. Pratacultural Science,2019,36(5):1405−1414.
    [5]
    WANG T, ZHANG H, ZHU H. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops[J]. Horticulture Research,2019,6(1):781−793.
    [6]
    JOHANSEN E. Future access and improvement of industrial lactic acid bacteria cultures[J]. Microbial Cell Factories,2017,16(1):230. doi: 10.1186/s12934-017-0851-1
    [7]
    AGRIOPOULOU S, STAMATELOPOULOU E, SACHADYN-KRÓL M, et al. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects[J]. Microorganisms,2020,8(6):952. doi: 10.3390/microorganisms8060952
    [8]
    BEHERA S S, RAY R C, ZDOLEC N. Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods[J]. BioMed Research International,2018,2018:1−18.
    [9]
    SALVETTI E, TORRIANI S, FELIS G E. The genus Lactobacillus: A taxonomic update[J]. Probiotics and Antimicrobial Proteins,2012,4(4):217−226. doi: 10.1007/s12602-012-9117-8
    [10]
    SUN Z, HARRIS H M B, MCCANN A, et al. Expanding the biotechnology potential of Lactobacilli through comparative genomics of 213 strains and associated genera[J]. Nature Communications,2015,6:8322. doi: 10.1038/ncomms9322
    [11]
    DI CERBO A, PALMIERI B, APONTE M, et al. Mechanisms and therapeutic effectiveness of Lactobacilli[J]. Journal of Clinical Pathology,2016,69(3):187−203. doi: 10.1136/jclinpath-2015-202976
    [12]
    陈丽华. 乳酸杆菌对ApoE(-/-)小鼠动脉粥样硬化形成的影响及机制研究[D]. 长沙:中南大学, 2013.

    CHEN L H. Study on suppressed effect of Lactobacilli on atherogenesis in ApoE (-/-) mice and its mechanism[D]. Changsha: Central South University, 2013.
    [13]
    ABDEL-DAIM A, HASSOUNA N, HAFEZ M, et al. Antagonistic activity of Lactobacillus isolates against salmonella typhi in vitro[J]. BioMed Research International,2013,2013:680605.
    [14]
    PRABHURAJESHWAR C, CHANDRAKANTH R K. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances[J]. Biomedical Journal,2017,40(5):270−283. doi: 10.1016/j.bj.2017.06.008
    [15]
    MU Q, TAVELLA V J, LUO X M. Role of Lactobacillus reuteri in human health and diseases[J]. Frontiers in Microbiology,2018,9(APR):1−17.
    [16]
    SZILAGYI A, ISHAYEK N. Lactose intolerance, dairy avoidance, and treatment options[J]. Nutrients,2018,10(12):1994. doi: 10.3390/nu10121994
    [17]
    祁敏. 应用CRISPR-Cas9技术在植物乳杆菌中进行基因编辑的研究[D]. 南京:南京师范大学, 2019.

    QI M. Study of a gene editing technique-CRISPR/Cas9 in Lactobacillus plantarum[D]. Nanjing: Nanjing Normal University, 2019.
    [18]
    PASOLLI E, DE FILIPPIS F, MAURIELLO I E, et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome[J]. Nature Communications,2020,11(1):1−12. doi: 10.1038/s41467-019-13993-7
    [19]
    BRADSHAW M J, BHATTACHARYYA S, VENNA N, et al. Neurologic manifestations of systemic rheumatologic diseases[Z](2020).
    [20]
    JANG H R, PARK H J, KANG D, et al. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption[J]. Experimental and Molecular Medicine,2019,51(8):1−14.
    [21]
    DAN T, REN W, LIU Y, et al. Volatile flavor compounds profile and fermentation characteristics of milk fermented by Lactobacillus delbrueckii subsp. bulgaricus[J]. Frontiers in Microbiology,2019,10(September):2183.
    [22]
    唐立伟, 李想, 左晨旭, 等. 乳杆菌在发酵乳饮料中的应用[J]. 工业微生物,2020,50(1):44−48. [TANG L W, LI X, ZUO C X, et al. Application of Lactobacillus in fermented milk beverage[J]. Industrial Microbiology,2020,50(1):44−48. doi: 10.3969/j.issn.1001-6678.2020.01.008
    [23]
    WANG J, ISHFAQ M, GUO Y, et al. Assessment of probiotic properties of Lactobacillus salivarius isolated from chickens as feed additives[J]. Frontiers in Veterinary Science,2020,7(7):415.
    [24]
    卢兆芸, 陈海婴, 彭冬英, 等. 保加利亚乳杆菌和嗜热链球菌发酵紫红薯酸牛奶[J]. 中国乳品工业,2011,39(12):39−40. [LU Z Y, CHEN H Y, PENG D Y, et al. Purple sweet potatoes yoghurt fermented by Lactobacillus bulgaricus and Streptococcus thermophilus[J]. China Dairy Industry,2011,39(12):39−40. doi: 10.3969/j.issn.1001-2230.2011.12.011
    [25]
    常曼曼, 李颖, 阴芳冉, 等. 保加利亚乳杆菌LB—DR发酵红树莓汁的特性及代谢产物研究[J]. 林业与生态科学,2018,33(4):408−414,428. [CHANG M M, LI Y, YIN F R, et al. Characteristics and metabolites of red raspberry juice fermentedby Lactobacillus bullgaricus LB-DR[J]. Forestry and Ecological Sciences,2018,33(4):408−414,428.
    [26]
    马蕊, 王鑫, 韩春然, 等. 嗜酸乳杆菌对蓝靛果汁降酸效果的研究[J]. 包装工程,2019,40(17):27−32. [MA R, WANG X, HAN C R, et al. Effect of Lactobacillus acidophilus on acid reduction of Lonicera caerulea L. juice[J]. Packaging Engineering,2019,40(17):27−32. doi: 10.19554/j.cnki.1001-3563.2019.17.005
    [27]
    谢雨婷, 宋明慧, 马毛毛, 等. 响应面法提高植物乳酸茵和嗜酸乳杆菌发酵椰奶的活菌数[J]. 食品与发酵工业,2019,45(7):207−212. [XIE Y T, SONG M H, MA M M, et al. Response surface methodology for optimization of coconut milk beverage's viable count fermented by Lactobacillus acidophilus and Lactobacillus plantarum[J]. Food and Fermentation Industries,2019,45(7):207−212.
    [28]
    NAVEED A, 陈则华, 李理, 等. 乳酸菌发酵制备大豆奶酪豆坯的工艺研究[J]. 食品与机械,2008(6):121−126. [NAVEED A, CHEN Z H, LI L, et al. Preparation of pehtze with suitable texture and flavor aspects for soy cheese production by using three Lactobacillus cultures[J]. Food & Machinery,2008(6):121−126. doi: 10.13652/j.issn.1003-5788.2008.06.019
    [29]
    罗其琪, 顾丰颖, 曹晶晶, 等. 鼠李糖乳杆菌发酵对玉米粉、玉米面团 理化特性及发糕品质的影响[J]. 食品科学,2018,39(18):1−7. [LUO Q Q, GU F Y, CAO J J, et al. Effects of Lactobacillus rhamnosus fermentation on the physicochemical properties of corn flour and corn dough and the quality of steamed sponge cake[J]. Food Science,2018,39(18):1−7. doi: 10.7506/spkx1002-6630-201818001
    [30]
    李小妮, 于立梅, 曾晓房, 等. 干酪乳杆菌和植物乳杆菌对广式腊肠品质的影响[J]. 中国调味品,2020,45(8):31−34. [LI X N, YU L M, ZENG X F, et al. Effects of Lactobacillus casei and Lactobacillus plantarum on the quality of cantonese sausage[J]. China Condiment,2020,45(8):31−34. doi: 10.3969/j.issn.1000-9973.2020.08.007
    [31]
    白雪菲, 金刚, 刘思, 等. 低温条件下希氏乳杆菌Q19苹果酸-乳酸发酵特性及其对葡萄酒香气成分的影响[J]. 食品科学,2020,41(18):146−152. [BAI X F, JIN G, LIU S, et al. Malolactic fermentation characteristics of Lactobacillus hilgardii Q19 at low temperature and its effect on aroma components in wine[J]. Food Science,2020,41(18):146−152. doi: 10.7506/spkx1002-6630-20190805-053
    [32]
    刘晓辉, 陈顺, 李扬, 等. 人工接种副干酪乳杆菌生产L乳酸酸菜条件的研究[J]. 中国调味品,2020,45(9):91−94. [LIU X H, CHEN S, LI Y, et al. Study on the conditions for production L-lactic acid fermented vegetables by artificial inoculation of Lactobacillus parcases[J]. China Condiment,2020,45(9):91−94.
    [33]
    ZHANG H X, ZHANG Y, YIN H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9[J]. Molecular Therapy,2019,27(4):735−746. doi: 10.1016/j.ymthe.2019.01.014
    [34]
    GAJ T, GERSBACH C A, BARBAS C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology,2013,31(7):397−405. doi: 10.1016/j.tibtech.2013.04.004
    [35]
    GUPTA D, BHATTACHARJEE O, MANDAL D, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing[J]. Life Sciences,2019,232(April):116636.
    [36]
    ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology,1987,169(12):5429−5433. doi: 10.1128/jb.169.12.5429-5433.1987
    [37]
    MOJICA F J M, DÍEZ-VILLASEÑOR C, SORIA E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria[J]. Molecular Microbiology,2000,36(1):244−246. doi: 10.1046/j.1365-2958.2000.01838.x
    [38]
    RODRÍGUEZ-RODRÍGUEZ D R, RAMÍREZ-SOLÍS R, GARZA-ELIZONDO M A, et al. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (review)[J]. International Journal of Molecular Medicine,2019,43(4):1559−1574.
    [39]
    JANSEN R, VAN EMBDEN J D A, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology,2002,43(6):1565−1575. doi: 10.1046/j.1365-2958.2002.02839.x
    [40]
    MOJICA F J M, DÍEZ-VILLASEÑOR C, GARCÍA-MARTÍNEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution,2005,60(2):174−182. doi: 10.1007/s00239-004-0046-3
    [41]
    POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology,2005,151(3):653−663. doi: 10.1099/mic.0.27437-0
    [42]
    BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science,2007,315(5819):1709−1712. doi: 10.1126/science.1138140
    [43]
    BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology,2005,151(8):2551−2561. doi: 10.1099/mic.0.28048-0
    [44]
    MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nature Reviews Microbiology,2011,9(6):467−477. doi: 10.1038/nrmicro2577
    [45]
    ALMENDROS C, GUZMÁN N M, DÍEZ-VILLASEÑOR C, et al. Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli[J]. PLoS ONE,2012,7(11):e50797. doi: 10.1371/journal.pone.0050797
    [46]
    DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature,2011,471(7340):602−607. doi: 10.1038/nature09886
    [47]
    GARNEAU J E, DUPUIS M È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature,2010,468(7320):67−71. doi: 10.1038/nature09523
    [48]
    MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science,2008,322(5909):1843−1845. doi: 10.1126/science.1165771
    [49]
    BROUNS S J, JORE M M, LUNDGREN M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science,2008,321(5891):960−964. doi: 10.1126/science.1159689
    [50]
    JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816−821. doi: 10.1126/science.1225829
    [51]
    CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science (New York, N Y),2013,339(6121):819−823. doi: 10.1126/science.1231143
    [52]
    WADHWA V. Boost visas for foreign entrepreneurs[J]. Nature,2017,543(7643):29−31. doi: 10.1038/543029a
    [53]
    CHEN F, DING X, FENG Y, et al. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting[J]. Nature Communications,2017,8:14958. doi: 10.1038/ncomms14958
    [54]
    SRIRAMULU D D, LIANG M, HERNANDEZ-ROMERO D, et al. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1, 2-propanediol by disproportionation[J]. Journal of Bacteriology,2008,190(13):4559−4567. doi: 10.1128/JB.01535-07
    [55]
    BOSMA E F, FORSTER J, NIELSEN A T. Lactobacilli and Pediococci as versatile cell factories-evaluation of strain properties and genetic tools[J]. Biotechnology Advances,2017,35(4):419−442. doi: 10.1016/j.biotechadv.2017.04.002
    [56]
    GOH Y J, LEE J, HUTKINS R W, et al. Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195 functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195[J]. Appl Environ Microbiol, 2007, 73(18): 5716-5724.
    [57]
    HIDALGO-CANTABRANA C, O’FLAHERTY S, BARRANGOU R. CRISPR-based engineering of next-generation lactic acid bacteria[J]. Current Opinion in Microbiology,2017,37:79−87. doi: 10.1016/j.mib.2017.05.015
    [58]
    VALERIO F, BAVARO A R, DI B M, et al. Effect of amaranth and quinoa flours on exopolysaccharide production and protein profile of liquid sourdough fermented by Weissella cibaria and Lactobacillus plantarum[J]. Frontiers in Microbiology,2020,11(May):967.
    [59]
    SONG X, HUANG H, XIONG Z, et al. CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei[J]. Applied and Environmental Microbiology,2017,83(22):e01259−17.
    [60]
    MAYER M J, D’AMATO A, COLQUHOUN I J, et al. Identification of genes required for glucan exopolysaccharide production in Lactobacillus johnsonii suggests a novel biosynthesis mechanism[J]. Applied and Environmental Microbiology,2020,86(8):e02808−19.
    [61]
    DERTLI E, MAYER M J, COLQUHOUN I J, et al. EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785[J]. Microbial Biotechnology,2016,9(4):496−501. doi: 10.1111/1751-7915.12314
    [62]
    ZHOU D, JIANG Z, PANG Q, et al. CRISPR/Cas9-assisted seamless genome editing in Lactobacillus plantarum and its application in N-acetylglucosamine production[J]. Applied and Environmental Microbiology,2019,85(21):e01367−19.
    [63]
    DATO L, BERTERAME N M, RICCI M A, et al. Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae[J]. Microbial Cell Factories,2014,13:147.
    [64]
    汪雪莲, 於钊庆, 朱 莉, 等. 毛细管电泳法同时测定发酵制品中D-乳酸和L-乳酸含量[J]. 化学与生物工程,2017,34(9):64−67. [WANG X L, YU Z Q, ZHU L, et al. Simultaneous determination of D- and L-lactic acids by capillary electrophoresis[J]. Chemistry & Bioengineering,2017,34(9):64−67. doi: 10.3969/j.issn.1672-5425.2017.09.014
    [65]
    POHANKA M. D-lactic acid as a metabolite: Toxicology, diagnosis, and detection[J]. BioMed Research International,2020,2020(2):3419034.
    [66]
    SUN L, ZHANG C, LYU P, et al. Contributory roles of two L-lactate dehydrogenases for L-lactic acid production in thermotolerant bacillus coagulans[J]. Scientific Reports,2016,6(November):37916.
    [67]
    张一凡. 基于CRISPR_Cas9平台构建拟干酪乳杆菌高效生产L-乳酸生产菌株及其代谢分析研究[D]. 上海: 华东理工大学, 2020.

    ZHANG Y F. Construction of Lactobacillus paracasei strain for efficient production of high-quality L-lactic acid based on CRISPR/Cas9 platform and its metabolic analysis[D]. Shanghai: East China University of Science and Technology, 2020.
    [68]
    HUANG Y, YOU C, LIU Z. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production[J]. 3 Biotech,2017,7(3):194. doi: 10.1007/s13205-017-0822-6
    [69]
    ASSAVASIRIJINDA N, GE D, YU B, et al. Efficient fermentative production of polymer-grade D-lactate by an engineered Alkaliphilic bacillus sp. strain under non-sterile conditions[J]. Microbial Cell Factories,2016,15:3. doi: 10.1186/s12934-015-0408-0
    [70]
    OZAKI A, KONISHI R, OTOMO C, et al. Metabolic engineering of schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose[J]. Metabolic Engineering Communications,2017,5(August):60−67.
    [71]
    PLAVEC T V, BERLEC A. Safety aspects of genetically modified lactic acid bacteria[J]. Microorganisms,2020,8(2):297. doi: 10.3390/microorganisms8020297
    [72]
    KARABIYIK G. Milestones of CRISPR/Cas9 system, promises and roadblocks[J]. Cancer Treatment and Research Communications,2021,26:100304. doi: 10.1016/j.ctarc.2021.100304
    [73]
    JAVED M R, SADAF M, AHMED T, et al. CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms[J]. Current Microbiology,2018,75(12):1675−1683. doi: 10.1007/s00284-018-1547-4
    [74]
    BURGIO G, TEBOUL L. Anticipating and identifying collateral damage in genome editing[J]. Trends in Genetics,2020,36(12):905−914. doi: 10.1016/j.tig.2020.09.011
    [75]
    GOH Y J, BARRANGOU R. Portable CRISPR-Cas9N system for flexible genome engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei[J]. Aem,2021,87(6):e02669−20.
    [76]
    AQUINO-JARQUIN G. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing[J]. Molecular Genetics and Metabolism, 2021, 134(1–2): 77–86.
    [77]
    LEENAY R T, VENTO J M, SHAH M, et al. Genome editing with CRISPR-Cas9 in Lactobacillus plantarum revealed that editing outcomes can vary across strains and between methods[J]. Biotechnology Journal,2019,14(3):e1700583. doi: 10.1002/biot.201700583
    [78]
    GUAN N, LIU L. Microbial response to acid stress: Mechanisms and applications[J]. Applied Microbiology and Biotechnology,2020,104(1):51−65. doi: 10.1007/s00253-019-10226-1
    [79]
    GONG L, REN C, XU Y. Deciphering the crucial roles of transcriptional regulator GadR on gamma-aminobutyric acid production and acid resistance in Lactobacillus brevis[J]. Microbial Cell Factories,2019,18(1):108. doi: 10.1186/s12934-019-1157-2
    [80]
    GONG L, REN C, XU Y. GlnR negatively regulates glutamate-dependent acid resistance in Lactobacillus brevis[J]. Appl Environ Microbiol,2020,86(7):e02615−19.
    [81]
    RUSSO P, DLLM M, CAPOZZI V, et al. Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions[J]. International Journal of Molecular Sciences,2012,13(9):10680−10696. doi: 10.3390/ijms130910680
    [82]
    CHASTANET A, FERT J, MSADEK T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other gram-positive bacteria[J]. Molecular Microbiology,2003,47(4):1061−1073. doi: 10.1046/j.1365-2958.2003.03355.x
    [83]
    DESMOND C, FITZGERALD G F, STANTON C, et al. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338[J]. Applied and Environmental Microbiology,2004,70(10):5929−5936. doi: 10.1128/AEM.70.10.5929-5936.2004
    [84]
    ALVAREZ-SIEIRO P, MONTALBÁN-LÓPEZ M, MU D, et al. Bacteriocins of lactic acid bacteria: Extending the family[J]. Applied Microbiology and Biotechnology,2016,100(7):2939−2951. doi: 10.1007/s00253-016-7343-9
    [85]
    ZIMINA M, BABICH O, PROSEKOV A, et al. Overview of global trends in classification, methods of preparation and application of bacteriocins[J]. Antibiotics,2020,9(9):1−21.
    [86]
    DJENANE D, ABOUDAOU M, DJENANE F, et al. Improvement of the shelf-life status of modified atmosphere packaged camel meat using nisin and Olea europaea subsp. laperrinei leaf extract[J]. Foods,2020,9(9):1336. doi: 10.3390/foods9091336
    [87]
    REINERS J, LAGEDROSTE M, GOTTSTEIN J, et al. Insights in the antimicrobial potential of the natural nisin variant nisin H[J]. Frontiers in Microbiology,2020,11(October):573614.
    [88]
    O’SULLIVAN J N, O’CONNOR P M, REA M C, et al. Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota[J]. Journal of Bacteriology,2020,202(3):e00639−19.
    [89]
    OH J H, VAN PIJKEREN J P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri[J]. Nucleic Acids Research,2014,42(17):e131. doi: 10.1093/nar/gku623
    [90]
    VAN PIJKEREN J P, NEOH K M, SIRIAS D, et al. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri[J]. Bioengineered,2012,3(4):209−217. doi: 10.4161/bioe.21049
    [91]
    STEIDLER L, HANS W, SCHOTTE L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10[J]. Science,2000,289(5483):1352−1355. doi: 10.1126/science.289.5483.1352
    [92]
    WANG R, JIANG L, ZHANG M, et al. The adhesion of Lactobacillus salivarius REN to a human intestinal epithelial cell line requires S-layer proteins[J]. Scientific Reports, 2017, 7 (September 2016): 44029.
    [93]
    VON KÜGELGEN A, TANG H, HARDY G G, et al. In situ structure of an intact lipopolysaccharide-bound bacterial surface layer[J]. Cell,2020,180(2):348−358. doi: 10.1016/j.cell.2019.12.006
    [94]
    FAGAN R P, FAIRWEATHER N F. Biogenesis and functions of bacterial S-layers[J]. Nature Reviews Microbiology,2014,12(3):211−222. doi: 10.1038/nrmicro3213
    [95]
    SCHETTERS S T T, KRUIJSSEN L J W, CROMMENTUIJN M H W, et al. Mouse DC-SIGN/CD209a as target for antigen delivery and adaptive immunity[J]. Frontiers in Immunology,2018,9(MAY):990.
    [96]
    LIGHTFOOT Y L, SELLE K, YANG T, et al. SIGNR 3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis[J]. The EMBO Journal,2015,34(7):881−895. doi: 10.15252/embj.201490296
    [97]
    JOHNSON B R, O’FLAHERTY S, GOH Y J, et al. The S-layer associated serine protease homolog prtX impacts cell surface-mediated microbe-host interactions of Lactobacillus acidophilus NCFM[J]. Frontiers in Microbiology,2017,8(JUN):1185.
    [98]
    UROIĆ K, NOVAK J, HYNÖNEN U, et al. The role of s-layer in adhesive and immunomodulating properties of probiotic starter culture Lactobacillus brevis D6 isolated from artisanal smoked fresh cheese[J]. LWT-Food Science and Technology,2016,69:623−632. doi: 10.1016/j.lwt.2016.02.013
    [99]
    DO CARMO F L R, RABAH H, DE OLIVEIRA CARVALHO R D, et al. Extractable bacterial surface proteins in probiotic-host interaction[J]. Frontiers in Microbiology,2018,9(APR):645.
  • Cited by

    Periodical cited type(8)

    1. 韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 . 本站查看
    2. 邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
    3. 刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 . 本站查看
    4. 马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
    5. 赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
    6. 周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
    7. 渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 . 本站查看
    8. 靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (386) PDF downloads (19) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return