LI Wenwen, WANG Dan, DONG Shujun, et al. Preparation of Ginger Peel Polysaccharide-zinc Complex and in Vitro Simulated Digestion[J]. Science and Technology of Food Industry, 2022, 43(18): 185−191. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110294.
Citation: LI Wenwen, WANG Dan, DONG Shujun, et al. Preparation of Ginger Peel Polysaccharide-zinc Complex and in Vitro Simulated Digestion[J]. Science and Technology of Food Industry, 2022, 43(18): 185−191. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110294.

Preparation of Ginger Peel Polysaccharide-zinc Complex and in Vitro Simulated Digestion

More Information
  • Received Date: November 24, 2021
  • Available Online: July 11, 2022
  • In this study, ginger peel polysaccharide were combined with zinc sulfate, and its preparation process was optimized by single factor and response surface experiments with the chelation rate as the index. The digestion and absorption of ginger peel polysaccharide-zinc complex and zinc sulfate were analyzed by in vitro simulation of gastrointestinal digestion. The results showed that the optimal process conditions for preparing ginger peel polysaccharide-zinc complex were: Reaction temperature 60 ℃, reaction time 125 min, pH8, and mass ratio of polysaccharide and zinc 24:1. The chelation rate reached 98.53%±0.31% under these conditions, and the content of zinc determined by inductively coupled plasma mass spectrometer was approximately 21.17±0.25 mg/g. In vitro simulated gastrointestinal digestion research showed that the dissolution rate of ginger peel polysaccharide-zinc complex in gastrointestinal fluid was relatively stable, and gastric juice had little effect on the dissolution rate of ginger peel polysaccharide-zinc complex, and the dissolution rate and dialysis rate of ginger peel polysaccharide-zinc complex in intestinal fluid were higher than that of zinc sulfate. In summary, the ginger peel polysaccharide-zinc complex had high stability and bioavailability and acted as a new zinc supplement.
  • [1]
    刘丹, 张程慧, 安容慧, 等. 生姜主要生物活性成分提取及应用研究进展[J]. 食品工业科技,2016,37(20):391−395. [LIU D, ZHANG C H, AN R H, et al. Progress in the extraction and application of the main bioactive ingredients of ginger[J]. Science and Technology of Food Industry,2016,37(20):391−395. doi: 10.13386/j.issn1002-0306.2016.20.070

    LIU D, ZHANG C H, AN R H, et al. Progress in the extraction and application of the main bioactive ingredients of ginger[J]. Science and Technology of Food Industry, 2016, 37(20): 391-395. doi: 10.13386/j.issn1002-0306.2016.20.070
    [2]
    任清盛, 李承永. 我国生姜产业现状及发展分析[J/OL]. 中国蔬菜, 2021(8): 1−4.

    REN Q S, LI C Y. Analysis of the current status and development of the ginger industry in China[J/OL]. Chinese Vegetables, 2021(8): 1−4.
    [3]
    YANG X L, WEI S Q, LU X M, et al. A neutral polysaccharide with a triple helix structure from ginger: Characterization and immunomodulatory activity[J]. Food Chemistry,2021,350:129261−129261. doi: 10.1016/j.foodchem.2021.129261
    [4]
    WANG Y, WEI X L, WANG F H, et al. Structural characterization and antioxidant activity of polysaccharide from ginger[J]. International Journal of Biological Macromolecules,2018,111:862−869. doi: 10.1016/j.ijbiomac.2018.01.087
    [5]
    CHEN G T, YUAN B, WANG H X, et al. Characterization and antioxidant activity of polysaccharides obtained from ginger pomace using two different extraction processes[J]. International Journal of Biological Macromolecules,2019,139:801−809. doi: 10.1016/j.ijbiomac.2019.08.048
    [6]
    ZHANG Z S, WANG X M, ZHANG J J, et al. Potential antioxidant activities in vitro of polysaccharides extracted from ginger (Zingiber officinale)[J]. Carbohydrate Polymers,2011,86(2):448−452. doi: 10.1016/j.carbpol.2011.04.062
    [7]
    WANG Y, WANG S X, SONG R Z, et al. Ginger polysaccharides induced cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[J]. International Journal of Biological Macromolecules,2019,123:81−90. doi: 10.1016/j.ijbiomac.2018.10.169
    [8]
    LIAO D W, CHENG C, LIU J P, et al. Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods[J]. International Journal of Biological Macromolecules,2020,152:894−903. doi: 10.1016/j.ijbiomac.2020.02.325
    [9]
    CHEN X H, CHEN G J, WANG Z R, et al. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: Preparation, structure characteristics, and biological activities[J]. International Journal of Biological Macromolecules,2020,151:635−649. doi: 10.1016/j.ijbiomac.2020.02.222
    [10]
    夏宇. 生姜皮多糖的分离纯化、结构分析及其抗氧化活性研究[D]. 南京: 南京农业大学, 2016.

    XIA Y. Study on the separation, purification, structural analysis and antioxidant activity of ginger skin polysaccharide[D]. Nanjing: Nanjing Agricultural University, 2016.
    [11]
    ZHANG Y, KHAN M Z H, YUAN T, et al. Preparation and characterization of D. opposita thunb polysaccharide-zinc inclusion complex and evaluation of anti-diabetic activities[J]. International Journal of Biological Macromolecules,2019,121:1029−1036. doi: 10.1016/j.ijbiomac.2018.10.068
    [12]
    WANG P P, HUANG Q, CHEN C, et al. The chemical structure and biological activities of a novel polysaccharide obtained from fructus mori and its zinc derivative[J]. Journal of Functional Foods,2019,54:64−73. doi: 10.1016/j.jff.2019.01.008
    [13]
    PIECHAL A, BLECHARZ-KLIN K, PYRZANOWSKA J, et al. Maternal zinc supplementation improves spatial memory in rat pups[J]. Biological Trace Element Research,2012,147(1−3):299−308. doi: 10.1007/s12011-012-9323-y
    [14]
    MAARES M, HAASE H. Zinc and immunity: An essential interrelation[J]. Archives of Biochemistry and Biophysics,2016,611:58−65. doi: 10.1016/j.abb.2016.03.022
    [15]
    OTT E S, SHAY N F. Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytes[J]. Experimental Biology and Medicine,2001,226(9):841−846. doi: 10.1177/153537020122600906
    [16]
    KATSURAYA K, OKUYAMA K, HATANAKA K, et al. Constitution of konjac glucomannan: Chemical analysis and 13 C NMR spectroscopy[J]. Carbohydrate Polymers,2003,53(2):183−189. doi: 10.1016/S0144-8617(03)00039-0
    [17]
    富天昕, 张舒, 盛亚男, 等. 绿豆多肽锌螯合物的制备及其结构与体外消化的分析[J]. 食品科学,2020,41(4):59−66. [FU T X, ZHANG S, SHENG Y N, et al. Preparation, structure and in vitro digestion of zinc chelate of mung bean polypeptide[J]. Food Science,2020,41(4):59−66. doi: 10.7506/spkx1002-6630-20190710-137

    FU T X, ZHANG S, SHENG Y N, et al. Preparation, structure and in vitro digestion of zinc chelate of mung bean polypeptide[J]. Food Science, 2020, 41(4): 59-66. doi: 10.7506/spkx1002-6630-20190710-137
    [18]
    赵姝雯. 金针菇(Flammulina velutipes)锌多糖的制备、结构分析及其生物活性研究[D]. 南京: 南京农业大学, 2016.

    ZHAO S W. Preparation, structure analysis and biological activity of zinc polysaccharide from Flammulina velutipes[D]. Nanjing: Nanjing Agricultural University, 2016.
    [19]
    ZHANG M, ZHAO H, SHEN Y, et al. Preparation, characterization and antioxidant activity evaluation in vitro of Fritillaria ussuriensis polysaccharide-zinc complex[J]. International Journal of Biological Macromolecules,2020,146:462−474. doi: 10.1016/j.ijbiomac.2020.01.002
    [20]
    LI C, HUANG Q, XIAO J, et al. Preparation of Prunella vulgaris polysaccharide-zinc complex and its antiproliferative activity in HepG2 cells[J]. International Journal of Biological Macromolecules,2016,91:671−679. doi: 10.1016/j.ijbiomac.2016.06.012
    [21]
    ZHANG C, GAO Z, HU C L, et al. Antioxidant, antibacterial and anti-aging activities of intracellular zinc polysaccharides from Grifola frondosa SH-05[J]. International Journal of Biological Macromolecules,2017,95:778−787. doi: 10.1016/j.ijbiomac.2016.12.003
    [22]
    ZHENG L, ZHAI G Y, ZHANG J J, et al. Antihyperlipidemic and hepatoprotective activities of mycelia zinc polysaccharide from Pholiota nameko SW-02.[J]. International Journal of Biological Macromolecules,2014,70:523−529. doi: 10.1016/j.ijbiomac.2014.07.037
    [23]
    郑义, 王卫东, 李勇, 等. 高良姜多糖提取工艺优化及其抗氧化活性[J]. 食品科学,2014,35(2):126−131. [ZHENG Y, WANG W D, LI Y, et al. Optimization of sorghum ginger glycan extraction process and its antioxidant activity[J]. Food Science,2014,35(2):126−131. doi: 10.7506/spkx1002-6630-201402023

    ZHENG Y, WANG W D, LI Y, et al. Optimization of sorghum ginger glycan extraction process and its antioxidant activity[J]. Food Science, 2014, 35(2): 126-131. doi: 10.7506/spkx1002-6630-201402023
    [24]
    李兴艳, 张丙云, 尚永彪. 正交试验优化酵母多糖锌配合物的制备及其对尿素的吸附性能[J]. 食品科学,2013,34(14):57−62. [LI X Y, ZHANG B Y, SHANG Y B. Optimization of the preparation of yeast polysaccharide zinc complex and its adsorption performance for urea by orthogonal test[J]. Food Science,2013,34(14):57−62. doi: 10.7506/spkx1002-6630-201314012

    LI X Y, ZHANG B Y, SHANG Y B. Optimization of the preparation of yeast polysaccharide zinc complex and its adsorption performance for urea by orthogonal test[J]. Food Science, 2013, 34(14): 57-62. doi: 10.7506/spkx1002-6630-201314012
    [25]
    廉雯蕾. 脱酰胺—酶解法制备米蛋白肽及其亚铁螯合物的研究[D]. 无锡: 江南大学, 2015.

    LIAN W L. Preparation of rice protein peptides and their ferrous chelates by deamidation and enzymatic hydrolysis[D]. Wuxi: Jiangnan University, 2015.
    [26]
    徐威, 张碟, 蔡杰, 等. 硒蛋白微胶囊的制备、结构表征及体外消化特性研究[J]. 食品工业科技,2020,41(14):29−35. [XU W, ZHANG D, CAI J, et al. Preparation, structure characterization and in vitro digestion of selenium protein microcapsules[J]. Science and Technology of Food Industry,2020,41(14):29−35.

    XU W, ZHANG D, CAI J, et al. Preparation, structure characterization and in vitro digestion of selenium protein microcapsules[J]. Science and Technology of Food Industry, 2020, 41(14): 29-35.
    [27]
    QIU J Q, ZHANG H, WANG Z Y, et al. Response surface methodology for the synthesis of an Auricularia auriculajudae polysaccharides-CDDP complex[J]. International Journal of Biological Macromolecules,2016,93:333−343. doi: 10.1016/j.ijbiomac.2016.06.066
    [28]
    陈义勇, 张阳. 杏鲍菇多糖羧甲基化修饰工艺及其抗氧化活性[J]. 食品与发酵工业,2016,42(7):119−127. [CHEN Y Y, ZHANG Y. Process of carboxymethylation of polysaccharide and its antioxidant activity[J]. Food and Fermentation Industry,2016,42(7):119−127. doi: 10.13995/j.cnki.11-1802/ts.201607021

    CHEN Y Y, ZHANG Y. Process of carboxymethylation of polysaccharide and its antioxidant activity[J]. Food and Fermentation Industry, 2016, 42(7): 119-127. doi: 10.13995/j.cnki.11-1802/ts.201607021
    [29]
    京晶. 向日葵果胶铁的制备及其性能研究[D]. 太原: 中北大学, 2021.

    JING J. Preparation of pectin iron and its properties of sunflower plants[D]. Taiyuan: North China University, 2021.
    [30]
    董金满. 罗耳阿太菌多糖锌的制备、表征及其生物活性研究[D]. 长春: 吉林农业大学, 2018.

    DONG J M. Preparation, characterization and biological activity of zinc polysaccharide from Archaea romanni[D]. Changchun: Jilin Agricultural University, 2018.
    [31]
    CHENG C, HUANG D C, ZHAO L Y, et al. Preparation and in vitro absorption studies of a novel polysaccharide-iron(Ⅲ) complex from Flammulina velutipes[J]. International Jouanal of Biological Macromolecules,2019(132):801−810.
    [32]
    富天昕. 绿豆多肽锌螯合物的制备和结构鉴定及生物利用率研究[D]. 黑龙江: 黑龙江八一农垦大学, 2020.

    FU T X. Preparation, structure identification and bioavailability of zinc chelate of mung bean polypeptide[D]. Heilongjiang: Heilongjiang Bayi Agricultural University, 2020.
    [33]
    柯枭, 胡晓, 杨贤庆, 等. 罗非鱼皮胶原蛋白肽-锌螯合物的制备及结构表征与体外消化分析[J]. 食品与发酵工业,2021,47(14):38−44. [KE X, HU X, YANG X Q, et al. Preparation and structural characterization of tilapia skin collagen peptide-zinc chelates and in vitro digestion analysis[J]. Food and Fermentation Industry,2021,47(14):38−44.

    KE X, HU X, YANG X Q, et al. Preparation and structural characterization of tilapia skin collagen peptide-zinc chelates and in vitro digestion analysis[J]. Food and Fermentation Industry, 2021, 47(14): 38-44.
    [34]
    WANG L L, WANG L L, SU C Y, et al. Characterization and degestion features of a novel polysaccharide-Fe(Ⅲ) complex as an iron supplement[J]. Carbohydate Polymers,2020,249(41):116812.
    [35]
    OLLIG J, KLOUBERT V, HAASE H, et al. Parament influencing Zinc in experimental systems in vivo and in vitro[J]. Metals,2016,6(3):71. doi: 10.3390/met6030071
    [36]
    WANG X, ZHOU J, TONG P S, et al. Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate-zinc complexes[J]. Journal of Dairy Science,2011,94(6):2731−2740. doi: 10.3168/jds.2010-3900
  • Cited by

    Periodical cited type(8)

    1. 韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 . 本站查看
    2. 邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
    3. 刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 . 本站查看
    4. 马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
    5. 赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
    6. 周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
    7. 渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 . 本站查看
    8. 靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (187) PDF downloads (12) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return