ZHU Zhenzhu, JIANG Rui, LIAO Liuyue, et al. Advance in Structure and Bioactivities of Plant Extracellular Vesicles and Its Application in Food and Drug Industry[J]. Science and Technology of Food Industry, 2022, 43(21): 422−432. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110217.
Citation: ZHU Zhenzhu, JIANG Rui, LIAO Liuyue, et al. Advance in Structure and Bioactivities of Plant Extracellular Vesicles and Its Application in Food and Drug Industry[J]. Science and Technology of Food Industry, 2022, 43(21): 422−432. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110217.

Advance in Structure and Bioactivities of Plant Extracellular Vesicles and Its Application in Food and Drug Industry

More Information
  • Received Date: November 18, 2021
  • Available Online: August 22, 2022
  • The structure and function of plant extracellular vesicles (PEVs) are similar to those of animal-derived exosomes. Exosomes play important roles in maintaining the homeostasis of biological environment and preventing various diseases, more and more studies are focused on their bioactivities and applications. This article aims to review the structure and composition, extraction methods, characterization methods, anti-inflammatory activity of PEVs and their application in food and drug industry. In this paper, the overview of PEVs is introduced, including its structure and chemical composition; the advantages and disadvantages of different extraction and characterization methods are also summarized. It will help researchers to choose the appropriate method to prepare nano-sized PEVs with biological functions. This paper focuses on the anti-inflammatory activities of PEVs, especially research achievements in alleviating inflammatory bowel disease. The application of PEVs in food industry is summarized, including the potential application in beverage, food processing and as a delivery carrier of food functional factors. Advances in drug delivery by PEVs are also briefly reviewed. It will provide a theoretical support for exploring the biological functions of PEVs from edible plants and expand the new application of PEVs in food and drug industry.
  • [1]
    郭月琴, 赵祺, 袁玮, 等. 外泌体作为温郁金活性成分姜黄素载体的研究进展[J]. 园艺与种苗,2020,40(2):40−44. [GUO Y Q, ZHAO Q, YUAN W, et al. Research progress of the exosomes as drug delivery vehicles of curcumin of active ingredient in Curcuma wenyujin[J]. Horticulture & Seed,2020,40(2):40−44. doi: 10.16530/j.cnki.cn21-1574/s.2020.02.015
    [2]
    RUTTER B D, INNES R W. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins[J]. Plant Physiology,2017,173(1):728−741. doi: 10.1104/pp.16.01253
    [3]
    AN Q L, AART J, RALPH H. Do plant cells secrete exosomes derived from multivesicular bodies?[J]. Plant Signaling & Behavior,2007,2(1):4−7.
    [4]
    XIAO J, FENG S Y, WANG X, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables[J]. Peer J,2018,6:e5186. doi: 10.7717/peerj.5186
    [5]
    赵濛, 刘志红, 李金泉. 外泌体组成特征及其作为细胞通讯和分子标记的生物学作用[J]. 中国生物化学与分子生物学报,2016,32(6):612−619. [ZHAO M, LIU Z H, LI J Q. Component and biological function of exosome as intercellular communication mediator and biomarker[J]. Chinese Journal of Biochemistry and Molecular Biology,2016,32(6):612−619. doi: 10.13865/j.cnki.cjbmb.2016.06.03
    [6]
    彭梦阳, 贺花, 王献伟, 等. 外泌体的生物学功能和调控机制研究进展[J]. 中国畜牧杂志,2021,57(1):11−16. [PENG M Y, HE H, WANG X W, et al. Advances in biological functions and regulatory mechanisms of exosomes[J]. Chinese Journal of Animal Science,2021,57(1):11−16. doi: 10.19556/j.0258-7033.20200224-01
    [7]
    HALPERIN W, JENSEN W A. Ultrastructural changes during growth and embryogenesis in carrot cell cultures[J]. Journal of Ultrastructure Research,1967,18(3-4):428−443. doi: 10.1016/S0022-5320(67)80128-X
    [8]
    MARCELA P, LAURA C, CARINE M L. A call for rigor and standardization in plant extracellular vesicle research[J]. Journal of Extracellular Vesicles,2021,10(6):e12048.
    [9]
    RECORD M. Exosome-like nanoparticles from food: Protective nanoshuttles for bioactive cargo[J]. Molecular Therapy,2013,21(7):1294−1296. doi: 10.1038/mt.2013.130
    [10]
    杨梦楠, 刘诗琦, 张静, 等. 果蔬中外泌体样纳米颗粒的分离、表征和应用研究进展[J]. 食品科学,2021,42(9):355−361. [YANG M N, LIU S Q, ZHANG J, et al. Isolation, characterization and application of exosome-like nanoparticles from fruits and vegetables: A review[J]. Food Science,2021,42(9):355−361. doi: 10.7506/spkx1002-6630-20200418-240
    [11]
    PEREZ B P, BLESA J, SORIANO J M, et al. Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits[J]. European Journal of Pharmaceutical Sciences,2017,98:40−50. doi: 10.1016/j.ejps.2016.09.022
    [12]
    THERY C, BOUSSAC M, VERON P, et al. Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles[J]. Journal of Immunology,2001,166(12):7309−7318. doi: 10.4049/jimmunol.166.12.7309
    [13]
    RAIMONDO S, NASELLLI F, FONTANA S, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death[J]. Oncotarget,2015,6(23):19514−19527. doi: 10.18632/oncotarget.4004
    [14]
    JU S W, MU J Y, DOKLAND T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis[J]. Molecular Therapy,2013,21(7):1345−1357. doi: 10.1038/mt.2013.64
    [15]
    王炎钦, 董海涛. 磷脂酸在植物中的第二信使功能[J]. 中国生物化学与分子生物学报,2006,22(9):697−703. [WANG Y Q, DONG H T. Biological function of phosphatidic acid as a second messenger in plants[J]. Chinese Journal of Biochemistry and Molecular Biology,2006,22(9):697−703. doi: 10.3969/j.issn.1007-7626.2006.09.003
    [16]
    王莉, 李静钰, 徐锐, 等. 植物外泌体的研究进展[J]. 国际药学研究杂志,2020,47(8):614−618. [WANG L, LI J Y, XU R, et al. Plant-derived exosomes: Research progress[J]. Journal of International Pharmaceutical Research,2020,47(8):614−618. doi: 10.13220/j.cnki.jipr.2020.08.006
    [17]
    MU J Y, ZHUANG X Y, WANG Q L, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles[J]. Molecular Nutrition & Food Research,2014,58(7):1−13.
    [18]
    吴静, 沈佐君. 外泌体提取方法及其miRNA在非小细胞肺癌中的应用[J]. 国际检验医学杂志,2020,41(15):1872−1875. [WU J, SHEN Z J. Exosome extraction method and application of miRNA in non-small cell lung cancer[J]. International Journal of Laboratory Medicine,2020,41(15):1872−1875. doi: 10.3969/j.issn.1673-4130.2020.15.018
    [19]
    LIU M K, CALVIN G. Separation and measurement of diffusion coefficients of linear and circular DNAs by flow field-flow fractionation[J]. Macromolecules,1993,26(14):3576−3588. doi: 10.1021/ma00066a016
    [20]
    SITAR S, ANJA K, PAHOVNIK D, et al. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation[J]. Analytical Chemistry,2015,87(18):9225−9233. doi: 10.1021/acs.analchem.5b01636
    [21]
    LEE K, SHAO H L, WEISSLEDER R, et al. Acoustic purification of extracellular microvesicles[J]. American Chemical Society Nano,2015,9(3):2321−2327.
    [22]
    MULLER L, HONG C S, DONNA B S, et al. Isolation of biologically-active exosomes from human plasma[J]. Journal of Immunological Methods,2014,411:55−65. doi: 10.1016/j.jim.2014.06.007
    [23]
    杨沁馨, 王达利, 卫雪. 间充质干细胞源性外泌体的检测方法[J]. 中国组织工程研究,2020,24(13):2087−2094. [YANG Q X, WANG D L, WEI X. Detection methods of mesenchymal stem cells-derived exosomes[J]. Chinese Journal of Tissue Engineering Research,2020,24(13):2087−2094. doi: 10.3969/j.issn.2095-4344.2063
    [24]
    HONG C S, FUNK S, MULLER L, et al. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer[J]. Journal of Extracellular Vesicles,2016,5:29289−29292. doi: 10.3402/jev.v5.29289
    [25]
    LIU F, VERMESH O, MANI V, et al. The exosome total isolation chip[J]. American Chemical Society Nano,2017,11(11):10712−10723.
    [26]
    ZHAO Z, YANG Y, ZENG Y, et al. A microfluidic exosearch chip for multiplexed exosome detection towarads blood-based ovarian cancer diagnosis[J]. Lab on A Chip,2016,16(3):489−496. doi: 10.1039/C5LC01117E
    [27]
    RIDER M A, HURWITZ S N, MECKES J R D G. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles[J]. Scientific Reports,2016,6(1):23978−23979. doi: 10.1038/srep23978
    [28]
    FANG S M, TIAN H Z, LI X C, et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification[J]. Public Library of Science,2017,12(4):e0175050.
    [29]
    凌妍, 钟娇丽, 唐晓山, 等. 扫描电子显微镜的工作原理及应用[J]. 山东化工,2018,47(9):78−79. [LING Y, ZHONG J L, TANG X S, et al. The principle and application of scanning electron microscope[J]. Shandong Chemical Industry,2018,47(9):78−79. doi: 10.3969/j.issn.1008-021X.2018.09.033
    [30]
    WANG Q L, REN Y, MU J Y, et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites[J]. Cancer Research,2015,75(12):2520−2529. doi: 10.1158/0008-5472.CAN-14-3095
    [31]
    乔斌, 陈虹妃, 张卉, 等. 肿瘤外泌体的分析检测[J]. 化学进展,2019,31(6):847−857. [QIAO B, CHEN H F, ZHANG H, et al. Analysis and detection of tumor exosomes[J]. Progress in Chemistry,2019,31(6):847−857. doi: 10.7536/PC181027
    [32]
    LIU B L, LI X Z, YU H, et al. Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases[J]. Theranostics,2021,11(19):9311−9330. doi: 10.7150/thno.60265
    [33]
    赵春花. 原子力显微镜的基本原理及应用[J]. 化学教育(中英文),2019,40(4):10−15. [ZHAO C H. Principles and applications of atomic force microscopy[J]. Chinese Journal of Chemical Education,2019,40(4):10−15.
    [34]
    ZU M H, XIE D C, BRANDON S B C, et al. 'Green' nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases[J]. Biomaterials,2021,279:121178. doi: 10.1016/j.biomaterials.2021.121178
    [35]
    JAE Y Y, SU J K, WON J R. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells[J]. Bioactive Materials,2021,6(12):4321−4332. doi: 10.1016/j.bioactmat.2021.04.023
    [36]
    霍彩云, 霍华, 唐玉玲, 等. 外泌体的分离鉴定和生物学功能研究进展[J]. 中国兽医杂志,2020,56(5):75−78. [HUO C Y, HUO H, TANG Y L, et al. Advanced in the separation, identification and bioactivities of exosomes[J]. Chinese Journal of Veterinary Medicine,2020,56(5):75−78.
    [37]
    BRYANSTON-CROSS P J. Laser light scattering: Basic principles and practice[J]. Optics & Laser Technology,1993,25(3):210−211.
    [38]
    GERALD P. Zeta电位测定—检验分散体的实用技术[J]. 染料与染色,1985(2):30−38. [GERALD P. Zeta potentiometry-A practical technique for testing dispersions[J]. Dyestuffs and Coloration,1985(2):30−38.
    [39]
    MOOSA R G, ELNAZ R, ZOHREH A, et al. Leucine-rich repeat-containing G-protein coupled receptor 5 gene overexpression of the rat small intestinal progenitor cells in response to orally administered grape exosome-like nanovesicles[J]. Advanced Biomedical Research,2018,7:125−130. doi: 10.4103/abr.abr_114_18
    [40]
    ZHUANG X, DENG Z B, MU J, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage[J]. Journal of Extracellular Vesicles,2015,4:28713. doi: 10.3402/jev.v4.28713
    [41]
    MAMMADOVA R, FIUME I, BOKKA R, et al. Identification of tomato infecting viruses that co-isolate with nanovesicles using a combined proteomics and electron-microscopic approach[J]. Nanomaterials (Basel),2021,11(8):1922−1941. doi: 10.3390/nano11081922
    [42]
    刘彦君. 鱼腥草来源的胞外囊泡对巨噬细胞线粒体代谢和炎症反应的调控作用[D]. 南京: 南京中医药大学, 2020

    LIU Y J. Regulatory effects of extracellular vesicles derived from Houttuynia cordata on mitochondrial metabolism and inflammatory response of macrophages[D]. Nanjing: Nanjing University of Chinese Medicine, 2020.
    [43]
    BRUNO S P, PAOLINI A, D'ORIA V, et al. Extracellular vesicles derived from Citrus sinensis modulate inflammatory genes and tight junctions in a human model of intestinal epithelium[J]. Frontiers in Nutrition,2021,8:778998. doi: 10.3389/fnut.2021.778998
    [44]
    ZHAO W J, BIAN Y P, WANG Q H, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress[J]. Acta Pharmacologica Sinica,2021,43(3):645−658.
    [45]
    鲍少杰. 虾青素对肠道炎症的影响及西兰花胞外囊泡载虾青素体系构建[D]. 扬州, 扬州大学, 2021

    BAO S J. Effect of astaxanthin on intestinal inflammation and construction of astaxanthin system in extracellular vesicles of broccoli[D]. Yangzhou: Yangzhou University, 2021.
    [46]
    胡盛平, 陈强锋, 罗金成. Northern印迹方法的改良及其应用[J]. 汕头大学医学院学报,2004(4):212−215. [HU S P, CHEN Q F, LUO J C. A simplified Northern blotting[J]. Journal of Shantou University Medical College,2004(4):212−215. doi: 10.3969/j.issn.1007-4716.2004.04.009
    [47]
    ZHAO Z H, YU S R, LI M, et al. Isolation of exosome-like nanoparticles and analysis of microRNAs derived from coconut water based on small RNA high-throughput sequencing[J]. Journal of Agricultural and Food Chemistry,2018,66(11):2749−2757. doi: 10.1021/acs.jafc.7b05614
    [48]
    XU B, ZHANG Y, DU X F, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity[J]. Cell Research,2017,27(7):882−897. doi: 10.1038/cr.2017.62
    [49]
    ZHENG T T, PU J L, CHEN Y X, et al. Plasma exosomes spread and cluster around β-amyloid plaques in an animal model of Alzheimer’s disease[J]. Frontiers in Aging Neuroscience,2017,9:12.
    [50]
    VLIST E J V D, HOEN E N M N, STOORVOGEL W, et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry[J]. Nature Protocols,2012,7(7):1311−1326.
    [51]
    WARREN D G, ADAM J M, CHARLES D S. An accurate, precise method for general labeling of extracellular vesicles[J]. Methods X,2015,2:360−367.
    [52]
    JAVARIA M, MIHYE L, SEONGHO R. Exosomes in food: Health benefits and clinical relevance in diseases[J]. Advances in Nutrition,2020,11(3):687−696. doi: 10.1093/advances/nmz123
    [53]
    KOBAYASHI T, SIEGMUND B, LE B C, et al. Ulcerative colitis[J]. Nature Reviews Disease Primers,2020,6(1):74. doi: 10.1038/s41572-020-0205-x
    [54]
    TENG Y, REN Y, SAYED M, et al. Plant-derived exosomal microRNAs shape the gut microbiota[J]. Cell Host Microbe,2018,24(5):637−652. doi: 10.1016/j.chom.2018.10.001
    [55]
    WANG B M, ZHUANG X Y, DENG Z B, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit[J]. Molecular Therapy,2014,22(3):522−534. doi: 10.1038/mt.2013.190
    [56]
    ZHANG H T, WANG L, LI C Y, et al. Exosome-induced regulation in inflammatory bowel disease[J]. Frontiers in Immuno-logy,2019,10:1464. doi: 10.3389/fimmu.2019.01464
    [57]
    ARAI K, MIZOBUCHI Y, TOKUJI Y, et al. Effects of dietary plant-origin glucosylceramide on bowel inflammation in DSS-treated mice[J]. Journal of Oleo Science,2015,64(7):737−742. doi: 10.5650/jos.ess15005
    [58]
    YUKIHIRO A, YUKI K, KAZUKI H, et al. Plant hvu-MIR168-3p enhances expression of glucose transporter 1 (SLC2A1) in human cells by silencing genes related to mitochondrial electron transport chain complex I[J]. Journal of Nutritional Biochemistry,2021,101:108922.
    [59]
    高文静, 侯敏, 王攀, 等. 外泌体作为中药新活性成分的研究进展[J]. 世界科学技术-中医药现代化,2019,21(9):1869−1876. [GAO W J, HOU M, WANG P, et al. Advances in research on exosome as a new active ingredient in traditional chinese medicine[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2019,21(9):1869−1876.
    [60]
    唐璇, 李东, 雷雨, 等. 抹茶超微粉碎技术研究进展[J]. 食品工业,2021,42(8):222−226. [TANG X, LI D, LEI Y, et al. Research progress of matcha ultrafine pulverization technology[J]. The Food Industry,2021,42(8):222−226.
    [61]
    LI X Y, LIANG Z, DU J C, et al. Herbal decoctosome is a novel form of medicine[J]. Science China (Life Sciences),2019,62(3):333−348. doi: 10.1007/s11427-018-9508-0
    [62]
    ZHOU Z, LI X H, LIU J X, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza a viruses[J]. Cell Research,2015,25(1):39−49. doi: 10.1038/cr.2014.130
    [63]
    DU J C, LIANG Z, XU J T, et al. Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7[J]. Science China (Life Sciences),2019,62(3):309−320. doi: 10.1007/s11427-017-9026-7
    [64]
    张碧莹, 杨蕊莲, 张静, 等. 不同预处理方式对豆浆品质特性的影响[J]. 食品与发酵工业,2017,43(2):134−140. [ZHANG B Y, YANG R L, ZHANG J, et al. Effect of different soybean pretreatment methods on the quality of soybean milk[J]. Food and Fermentation Industries,2017,43(2):134−140. doi: 10.13995/j.cnki.11-1802/ts.201702023
    [65]
    孙琦. 牛乳热加工特性及其盐类平衡的研究[D]. 北京: 中国农业科学院, 2012

    SUN Q. Study on the thermal processing characteristics of milk and its salt equilibrium[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
    [66]
    SAMUEL M, FONSEKA P, SANWLANI R, et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis[J]. Nature Communications,2021,12(1):3950. doi: 10.1038/s41467-021-24273-8
    [67]
    查干其其格, 锡林其其格, 文娟, 等. 马奶和酸马奶来源外秘体的分离及其对RAW264.7细胞细胞因子的作用[J]. 临床和实验医学杂志,2017,16(24):2397−2402. [CHAGANQIQIGE, XILINQIQIGE, WEN J, et al. Isolation of mare’s milk & koumiss-derived exosomes and its effect on cytokines of RAW264.7[J]. Journal of Clinical and Experimental Medicine,2017,16(24):2397−2402. doi: 10.3969/j.issn.1671-4695.2017.24.002
    [68]
    DEVER J T, KEMP M Q, THOMPSON A L, et al. Survival and diversity of human homologous dietary microRNAs in conventionally cooked top sirloin and dried bovine tissue extracts[J]. PLoS One,2015,10(9):e0138275.
    [69]
    王记莲. 响应面法优化红菊苣花青素的提取工艺及其微胶囊的制备[J]. 食品安全质量检测学报,2021,12(22):8870−8877. [WANG J L. Optimization of extraction technology of anthocyanins from Cichorium intybus by response surface methodology and preparation of microcapsules[J]. Journal of Food Safety & Quality,2021,12(22):8870−8877. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.033
    [70]
    丛林, 朱静华. 浅谈虾青素的功效和使用[J]. 田径,2021(10):84, 48. [CONG L, ZHU J H. Discussion on the efficacy and use of astaxanthin[J]. Track and Field,2021(10):84, 48.
    [71]
    张晓璐, 李英鹏, 吕邵娃, 等. 姜黄素纳米载体与应用的研究进展[J]. 当代化工,2021,50(11):2685−2688. [ZHANG X L, LI Y P, LV S W, et al. Research progress of curcumin nanocarriers and their applications[J]. Contemporary Chemical Industry,2021,50(11):2685−2688. doi: 10.3969/j.issn.1671-0460.2021.11.038
    [72]
    HETTICH B F, BADER J J, LEROUX J C. Encapsulation of hydrophilic compounds in small extracellular vesicles: Loading capacity and impact on vesicle functions[J]. Advanced healthcare materials,2021:e2100047.
    [73]
    KUNISAWA J, NAKAGAWA S, MAYUMI T. Pharmacotherapy by intracellular delivery of drugs using fusogenic liposomes: Application to vaccine development[J]. Advanced Drug Delivery Reviews,2001,52(3):177−186. doi: 10.1016/S0169-409X(01)00214-9
    [74]
    张奇, 邓英杰. 冻融法制备5-氟尿嘧啶脂质体及其稳定性考察[J]. 沈阳药科大学学报,2000(2):87−89. [ZHANG Q, DENG Y J. The preparation of 5-FU liposome by a freeze-thawing method and the study on its stability[J]. Journal of Shenyang Pharmaceutical University,2000(2):87−89. doi: 10.3969/j.issn.1006-2858.2000.02.003
    [75]
    ERVITI L A, SEOW Y, YIN H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nature Biotechnology: The Science and Business of Biotechnology,2011,29(4):341−345. doi: 10.1038/nbt.1807
    [76]
    ZHANG M Z, XIAO B, WANG H, et al. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy[J]. Molecular Therapy,2016,24(10):1783−1796. doi: 10.1038/mt.2016.159
    [77]
    LI Z, WANG H, YIN H, et al. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression[J]. Scientific Reports,2018,8(1):14644.
    [78]
    DONOSO Q J, AYALA M S, GONZÁLEZ V J. State-of-the-artexosome loading and functionalization techniques for enhanced therapeutics: A review[J]. Critical Reviews in Biotechnology,2020,40(6):804−820.
    [79]
    FARRUKH A, JEYABALAN J, AGRAWAL A K, et al. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer[J]. Food & Function,2017,8(11):4100−4107.
    [80]
    吴菊萍, 肖倩, 王建国, 等. 番茄外泌体的分离提取工艺优化及其作为药物载体的可行性分析[J]. 中国现代医学杂志,2019,29(24):8−14. [WU J P, XIAO Q, WANG J G, et al. Optimization of tomato-derived exosomes isolation and analysis of feasibility of it as nano carriers[J]. China Journal of Modern Medicine,2019,29(24):8−14. doi: 10.3969/j.issn.1005-8982.2019.24.002
    [81]
    ZHANG H G, SUN D M, ZHUANG X Y, et al. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes[J]. Molecular Therapy,2010,18(9):1606−1614. doi: 10.1038/mt.2010.105
    [82]
    QI Y, GUO L JIANG Y B, et al. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles[J]. Drug Delivery,2020,27(1):745−755. doi: 10.1080/10717544.2020.1762262
    [83]
    AGRAWAL A K, AQIL F, JEYABALAN J, et al. Milk-derived exosomes for oral delivery of paclitaxel[J]. Nanomedicine: Nanotechnology, Biology and Medicine,2017,13(5):1627−1636. doi: 10.1016/j.nano.2017.03.001
    [84]
    ZHUANG X Y, TENG Y, SAMYKUTTY A, et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression[J]. Molecular Therapy,2016,24(1):96−105. doi: 10.1038/mt.2015.188
  • Cited by

    Periodical cited type(5)

    1. 杨雪丽,牛犇,陈杭君,吴伟杰,王冠楠,房祥军,穆宏磊,郜海燕. 猴头菇纳米囊泡制备、结构表征及抗氧化活性分析. 食品工业科技. 2025(02): 218-230 . 本站查看
    2. 刘怡君,王红娟,张靖彬,陈欢,侯宏卫,胡清源. 植物细胞外囊泡作为药物载体的研究进展. 药学学报. 2025(03): 721-730 .
    3. 胡群菊,王潮岗,向文洲,王媛媛,范美华,张晓林,廖智,严小军. 微藻细胞外囊泡的研究进展. 水生生物学报. 2024(06): 1051-1064 .
    4. 曹桂芳,李丹,伊高阳,杨永利,姚晓琳. 植源性和乳源性胞外囊泡对慢性炎症的调控机制. 中国食品学报. 2024(07): 364-376 .
    5. 李俊言,王文苹,张祎,杨枝中. 植物类中药来源囊泡的研究进展. 浙江大学学报(医学版). 2023(03): 349-360 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (889) PDF downloads (67) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return